Limits...
Structure and Function of SLC4 Family [Formula: see text] Transporters.

Liu Y, Yang J, Chen LM - Front Physiol (2015)

Bottom Line: Dysfunctions of these transporters are associated with a series of human diseases.Based upon the proposed topology models, mutational and functional studies have identified important structural elements likely involved in the ion translocation by the SLC4 transporters.In the present article, we review the advances during the past decades in understanding the structure and function of the SLC4 transporters.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biophysics and Molecular Physiology, School of Life Science and Technology, Huazhong University of Science and Technology Wuhan, China.

ABSTRACT
The solute carrier SLC4 family consists of 10 members, nine of which are [Formula: see text] transporters, including three Na(+)-independent Cl(-)/[Formula: see text] exchangers AE1, AE2, and AE3, five Na(+)-coupled [Formula: see text] transporters NBCe1, NBCe2, NBCn1, NBCn2, and NDCBE, as well as "AE4" whose Na(+)-dependence remains controversial. The SLC4 [Formula: see text] transporters play critical roles in pH regulation and transepithelial movement of electrolytes with a broad range of demonstrated physiological relevances. Dysfunctions of these transporters are associated with a series of human diseases. During the past decades, tremendous amount of effort has been undertaken to investigate the topological organization of the SLC4 transporters in the plasma membrane. Based upon the proposed topology models, mutational and functional studies have identified important structural elements likely involved in the ion translocation by the SLC4 transporters. In the present article, we review the advances during the past decades in understanding the structure and function of the SLC4 transporters.

No MeSH data available.


Alignment of expression variants of SLC4 family  transporters. The diagram was based upon a sequence alignment with Clustal Omega from the European Bioinformatics Institute Details. Accession numbers for the SLC4 variants are available in Supplemental Table S1. The colors denoting homology among different SLC4 members are shown in the legend. The extreme Nt and Ct ends of different SLC4 members with identical color pattern do not denote homology unless specified elsewhere in the main text. The dotted vertical boxes in TMD indicate the putative transmembrane helices shown in model A in Figure 2. *Proteins containing PDZ-binding motif at the Ct end.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4664831&req=5

Figure 5: Alignment of expression variants of SLC4 family transporters. The diagram was based upon a sequence alignment with Clustal Omega from the European Bioinformatics Institute Details. Accession numbers for the SLC4 variants are available in Supplemental Table S1. The colors denoting homology among different SLC4 members are shown in the legend. The extreme Nt and Ct ends of different SLC4 members with identical color pattern do not denote homology unless specified elsewhere in the main text. The dotted vertical boxes in TMD indicate the putative transmembrane helices shown in model A in Figure 2. *Proteins containing PDZ-binding motif at the Ct end.

Mentions: The Nt domain accounts for 32-55% of the entire polypeptides of the SLC4 family transporters. As shown in Figure 5, the Nt domain can further be devided into multiple subdomains, including three variable regions Nt-VR1, Nt-VR2, and Nt-VR3 as well as two conserved regions Nt-CR1 and Nt-CR2. The conserved regions are highly homologous with a sequence identity of more than 33% among different SLC4 members, and 64-82% among different NCBTs. In contrast, the variable regions usually have little similarity among different SLC4 members and different variants of a same SLC4 member.


Structure and Function of SLC4 Family [Formula: see text] Transporters.

Liu Y, Yang J, Chen LM - Front Physiol (2015)

Alignment of expression variants of SLC4 family  transporters. The diagram was based upon a sequence alignment with Clustal Omega from the European Bioinformatics Institute Details. Accession numbers for the SLC4 variants are available in Supplemental Table S1. The colors denoting homology among different SLC4 members are shown in the legend. The extreme Nt and Ct ends of different SLC4 members with identical color pattern do not denote homology unless specified elsewhere in the main text. The dotted vertical boxes in TMD indicate the putative transmembrane helices shown in model A in Figure 2. *Proteins containing PDZ-binding motif at the Ct end.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4664831&req=5

Figure 5: Alignment of expression variants of SLC4 family transporters. The diagram was based upon a sequence alignment with Clustal Omega from the European Bioinformatics Institute Details. Accession numbers for the SLC4 variants are available in Supplemental Table S1. The colors denoting homology among different SLC4 members are shown in the legend. The extreme Nt and Ct ends of different SLC4 members with identical color pattern do not denote homology unless specified elsewhere in the main text. The dotted vertical boxes in TMD indicate the putative transmembrane helices shown in model A in Figure 2. *Proteins containing PDZ-binding motif at the Ct end.
Mentions: The Nt domain accounts for 32-55% of the entire polypeptides of the SLC4 family transporters. As shown in Figure 5, the Nt domain can further be devided into multiple subdomains, including three variable regions Nt-VR1, Nt-VR2, and Nt-VR3 as well as two conserved regions Nt-CR1 and Nt-CR2. The conserved regions are highly homologous with a sequence identity of more than 33% among different SLC4 members, and 64-82% among different NCBTs. In contrast, the variable regions usually have little similarity among different SLC4 members and different variants of a same SLC4 member.

Bottom Line: Dysfunctions of these transporters are associated with a series of human diseases.Based upon the proposed topology models, mutational and functional studies have identified important structural elements likely involved in the ion translocation by the SLC4 transporters.In the present article, we review the advances during the past decades in understanding the structure and function of the SLC4 transporters.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biophysics and Molecular Physiology, School of Life Science and Technology, Huazhong University of Science and Technology Wuhan, China.

ABSTRACT
The solute carrier SLC4 family consists of 10 members, nine of which are [Formula: see text] transporters, including three Na(+)-independent Cl(-)/[Formula: see text] exchangers AE1, AE2, and AE3, five Na(+)-coupled [Formula: see text] transporters NBCe1, NBCe2, NBCn1, NBCn2, and NDCBE, as well as "AE4" whose Na(+)-dependence remains controversial. The SLC4 [Formula: see text] transporters play critical roles in pH regulation and transepithelial movement of electrolytes with a broad range of demonstrated physiological relevances. Dysfunctions of these transporters are associated with a series of human diseases. During the past decades, tremendous amount of effort has been undertaken to investigate the topological organization of the SLC4 transporters in the plasma membrane. Based upon the proposed topology models, mutational and functional studies have identified important structural elements likely involved in the ion translocation by the SLC4 transporters. In the present article, we review the advances during the past decades in understanding the structure and function of the SLC4 transporters.

No MeSH data available.