Limits...
Understanding the physiology of the asymptomatic diaphragm of the M1592V hyperkalemic periodic paralysis mouse.

Ammar T, Lin W, Higgins A, Hayward LJ, Renaud JM - J. Gen. Physiol. (2015)

Bottom Line: The improved resting membrane potential (EM) results from significantly increased Na(+) K(+) pump electrogenic activity, and not from an increased protein content.One suggested mechanism for the greater action potential amplitude is lower intracellular Na(+) concentration because of greater Na(+) K(+) pump activity, allowing better Na(+) current during the action potential depolarization phase.Finally, HyperKPP diaphragm had a greater capacity to generate force at depolarized EM compared with wild-type diaphragm.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.

No MeSH data available.


Related in: MedlinePlus

At depolarized resting EM, action potential amplitude becomes significantly less in soleus and EDL than in the diaphragm, especially for HyperKPP. (A and B) The data are the same as in Fig. 12 but replotted to show differences between muscles. *, mean action potential amplitude from EDL or soleus fibers was significantly different from that of diaphragm fibers; ANOVA and LSD; P < 0.05.
© Copyright Policy - openaccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4664826&req=5

fig13: At depolarized resting EM, action potential amplitude becomes significantly less in soleus and EDL than in the diaphragm, especially for HyperKPP. (A and B) The data are the same as in Fig. 12 but replotted to show differences between muscles. *, mean action potential amplitude from EDL or soleus fibers was significantly different from that of diaphragm fibers; ANOVA and LSD; P < 0.05.

Mentions: We then compared the action potential amplitude versus resting EM between muscles for each of wild type and HyperKPP. For wild type, mean action potential amplitudes were lower in soleus and EDL compared with the diaphragm, with significant differences at depolarized resting EM (Fig. 13 A). The differences between diaphragm and hindlimb muscles were more pronounced in HyperKPP (Fig. 13 B). Similar analyses for action potential peak versus resting EM relationships gave rise to similar differences between wild type and HyperKPP and between EDL, soleus, and diaphragm to those observed for the action potential amplitude versus resting EM relationships (not depicted).


Understanding the physiology of the asymptomatic diaphragm of the M1592V hyperkalemic periodic paralysis mouse.

Ammar T, Lin W, Higgins A, Hayward LJ, Renaud JM - J. Gen. Physiol. (2015)

At depolarized resting EM, action potential amplitude becomes significantly less in soleus and EDL than in the diaphragm, especially for HyperKPP. (A and B) The data are the same as in Fig. 12 but replotted to show differences between muscles. *, mean action potential amplitude from EDL or soleus fibers was significantly different from that of diaphragm fibers; ANOVA and LSD; P < 0.05.
© Copyright Policy - openaccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4664826&req=5

fig13: At depolarized resting EM, action potential amplitude becomes significantly less in soleus and EDL than in the diaphragm, especially for HyperKPP. (A and B) The data are the same as in Fig. 12 but replotted to show differences between muscles. *, mean action potential amplitude from EDL or soleus fibers was significantly different from that of diaphragm fibers; ANOVA and LSD; P < 0.05.
Mentions: We then compared the action potential amplitude versus resting EM between muscles for each of wild type and HyperKPP. For wild type, mean action potential amplitudes were lower in soleus and EDL compared with the diaphragm, with significant differences at depolarized resting EM (Fig. 13 A). The differences between diaphragm and hindlimb muscles were more pronounced in HyperKPP (Fig. 13 B). Similar analyses for action potential peak versus resting EM relationships gave rise to similar differences between wild type and HyperKPP and between EDL, soleus, and diaphragm to those observed for the action potential amplitude versus resting EM relationships (not depicted).

Bottom Line: The improved resting membrane potential (EM) results from significantly increased Na(+) K(+) pump electrogenic activity, and not from an increased protein content.One suggested mechanism for the greater action potential amplitude is lower intracellular Na(+) concentration because of greater Na(+) K(+) pump activity, allowing better Na(+) current during the action potential depolarization phase.Finally, HyperKPP diaphragm had a greater capacity to generate force at depolarized EM compared with wild-type diaphragm.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.

No MeSH data available.


Related in: MedlinePlus