Limits...
Prevalence and Characterization of Shiga Toxin-Producing and Enteropathogenic Escherichia coli in Shellfish-Harvesting Areas and Their Watersheds.

Balière C, Rincé A, Blanco J, Dahbi G, Harel J, Vogeleer P, Giard JC, Mariani-Kurkdjian P, Gourmelon M - Front Microbiol (2015)

Bottom Line: more strains formed a strong biofilm at 18 than at 30°C.Finally, more than 85% of analyzed strains were found to be sensitive to the 16 tested antibiotics.These data suggest the low risk of human infection by STEC if shellfish from these shellfish-harvesting areas were consumed.

View Article: PubMed Central - PubMed

Affiliation: Laboratoire Santé Environnement et Microbiologie, Unité Santé, Génétique et Microbiologie des Mollusques, Département Ressources Biologiques et Environnement, Ifremer Plouzané, France.

ABSTRACT
more strains formed a strong biofilm at 18 than at 30°C. Finally, more than 85% of analyzed strains were found to be sensitive to the 16 tested antibiotics. These data suggest the low risk of human infection by STEC if shellfish from these shellfish-harvesting areas were consumed.

No MeSH data available.


Related in: MedlinePlus

Focused dendograms of XbaI PFGE patterns (PTs), characteristics and Sequence Types (STs) of 9 STEC O100:HNM (A) and the 13 major serotypes (B) isolated from freshwater (FW), shellfish (SF) [oyster (o), mussel (m), or cockle (c)] and superficial sediment (S), from the Brittany site (1) and the two Normandy sites (2 and 3). The similarity of PFGE profiles was compared and dendogram was created with the Bionumerics software 7.5 (Applied Maths, Belgium), using the band-based Dice unweighted-pair group method, using average linkages (UPGMA), based on 1% position tolerance. NT: non-typable, NM: non-motile, nd: not determined.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4664706&req=5

Figure 1: Focused dendograms of XbaI PFGE patterns (PTs), characteristics and Sequence Types (STs) of 9 STEC O100:HNM (A) and the 13 major serotypes (B) isolated from freshwater (FW), shellfish (SF) [oyster (o), mussel (m), or cockle (c)] and superficial sediment (S), from the Brittany site (1) and the two Normandy sites (2 and 3). The similarity of PFGE profiles was compared and dendogram was created with the Bionumerics software 7.5 (Applied Maths, Belgium), using the band-based Dice unweighted-pair group method, using average linkages (UPGMA), based on 1% position tolerance. NT: non-typable, NM: non-motile, nd: not determined.

Mentions: The STEC serotype O100:HNM (n = 9) presented identical PT (D) and ST (ST933; Figure 1A) despite of their three specificities: isolated (a) from oyster, mussel, and common cockle batches, freshwater, and superficial sediment samples, (b) from the sites 2 and 3, (c) during the sampling campaigns of May 2013, June 2013, March 2014, and June 2014. With regards to the major serotypes (Figure 1B), the six EPEC O26:H11 strains presented three additional PTs (i.e., L, BV, and AL) and two STs (i.e., ST29 and ST48) isolated from mussel and common cockle batches and freshwater samples. One of those belonging to the ST29 was isolated from the same mussel batch from which the STEC O26:H11 belonging to the ST21 was isolated. A unique PT (I) was observed for the two EPEC O145:H28 (ST not yet described), isolated from mussel and common cockle batches and sampled during the same campaign (June 2013). Both O103:H2 isolated during two different months (i.e., June 2013 and November 2013) had distinguishable PTs (i.e., M and N) and STs (i.e., ST1146 and ST343). Additionally, identical PTs and STs were found among the other STEC and EPEC strains isolated from different types of sample (i.e., shellfish vs. freshwater) or between shellfish batches (i.e., mussel vs. common cockle) and between freshwater samples, often from samples taken from the same sites on the same date (e.g., O153:H2, O108:H21 serotypes; Supplementary Figure S2).


Prevalence and Characterization of Shiga Toxin-Producing and Enteropathogenic Escherichia coli in Shellfish-Harvesting Areas and Their Watersheds.

Balière C, Rincé A, Blanco J, Dahbi G, Harel J, Vogeleer P, Giard JC, Mariani-Kurkdjian P, Gourmelon M - Front Microbiol (2015)

Focused dendograms of XbaI PFGE patterns (PTs), characteristics and Sequence Types (STs) of 9 STEC O100:HNM (A) and the 13 major serotypes (B) isolated from freshwater (FW), shellfish (SF) [oyster (o), mussel (m), or cockle (c)] and superficial sediment (S), from the Brittany site (1) and the two Normandy sites (2 and 3). The similarity of PFGE profiles was compared and dendogram was created with the Bionumerics software 7.5 (Applied Maths, Belgium), using the band-based Dice unweighted-pair group method, using average linkages (UPGMA), based on 1% position tolerance. NT: non-typable, NM: non-motile, nd: not determined.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4664706&req=5

Figure 1: Focused dendograms of XbaI PFGE patterns (PTs), characteristics and Sequence Types (STs) of 9 STEC O100:HNM (A) and the 13 major serotypes (B) isolated from freshwater (FW), shellfish (SF) [oyster (o), mussel (m), or cockle (c)] and superficial sediment (S), from the Brittany site (1) and the two Normandy sites (2 and 3). The similarity of PFGE profiles was compared and dendogram was created with the Bionumerics software 7.5 (Applied Maths, Belgium), using the band-based Dice unweighted-pair group method, using average linkages (UPGMA), based on 1% position tolerance. NT: non-typable, NM: non-motile, nd: not determined.
Mentions: The STEC serotype O100:HNM (n = 9) presented identical PT (D) and ST (ST933; Figure 1A) despite of their three specificities: isolated (a) from oyster, mussel, and common cockle batches, freshwater, and superficial sediment samples, (b) from the sites 2 and 3, (c) during the sampling campaigns of May 2013, June 2013, March 2014, and June 2014. With regards to the major serotypes (Figure 1B), the six EPEC O26:H11 strains presented three additional PTs (i.e., L, BV, and AL) and two STs (i.e., ST29 and ST48) isolated from mussel and common cockle batches and freshwater samples. One of those belonging to the ST29 was isolated from the same mussel batch from which the STEC O26:H11 belonging to the ST21 was isolated. A unique PT (I) was observed for the two EPEC O145:H28 (ST not yet described), isolated from mussel and common cockle batches and sampled during the same campaign (June 2013). Both O103:H2 isolated during two different months (i.e., June 2013 and November 2013) had distinguishable PTs (i.e., M and N) and STs (i.e., ST1146 and ST343). Additionally, identical PTs and STs were found among the other STEC and EPEC strains isolated from different types of sample (i.e., shellfish vs. freshwater) or between shellfish batches (i.e., mussel vs. common cockle) and between freshwater samples, often from samples taken from the same sites on the same date (e.g., O153:H2, O108:H21 serotypes; Supplementary Figure S2).

Bottom Line: more strains formed a strong biofilm at 18 than at 30°C.Finally, more than 85% of analyzed strains were found to be sensitive to the 16 tested antibiotics.These data suggest the low risk of human infection by STEC if shellfish from these shellfish-harvesting areas were consumed.

View Article: PubMed Central - PubMed

Affiliation: Laboratoire Santé Environnement et Microbiologie, Unité Santé, Génétique et Microbiologie des Mollusques, Département Ressources Biologiques et Environnement, Ifremer Plouzané, France.

ABSTRACT
more strains formed a strong biofilm at 18 than at 30°C. Finally, more than 85% of analyzed strains were found to be sensitive to the 16 tested antibiotics. These data suggest the low risk of human infection by STEC if shellfish from these shellfish-harvesting areas were consumed.

No MeSH data available.


Related in: MedlinePlus