Limits...
Plant-Derived Chimeric Virus Particles for the Diagnosis of Primary Sjögren Syndrome.

Tinazzi E, Merlin M, Bason C, Beri R, Zampieri R, Lico C, Bartoloni E, Puccetti A, Lunardi C, Pezzotti M, Avesani L - Front Plant Sci (2015)

Bottom Line: Plants are ideal for the production of protein-based nanomaterials because they synthesize and assemble complex multimeric proteins that cannot be expressed efficiently using other platforms.We found that PVX-lipo formulations were more sensitive than the chemically synthesized immunodominant peptide and equally specific when used to distinguish between healthy individuals and SjS patients.Our results demonstrate that nanomaterials based on plant viruses can be used as diagnostic reagents for SjS, and could also be developed for the diagnosis of other diseases.

View Article: PubMed Central - PubMed

Affiliation: Department of Medicine, University of Verona Verona, Italy.

ABSTRACT
Plants are ideal for the production of protein-based nanomaterials because they synthesize and assemble complex multimeric proteins that cannot be expressed efficiently using other platforms. Plant viruses can be thought of as self-replicating proteinaceous nanomaterials generally stable and easily produced in high titers. We used Potato virus X (PVX), chimeric virus particles, and Cowpea mosaic virus, empty virus-like particles to display a linear peptide (lipo) derived from human lipocalin, which is immunodominant in Sjögren's syndrome (SjS) and is thus recognized by autoantibodies in SjS patient serum. These virus-derived nanoparticles were thus used to develop a diagnostic assay for SjS based on a direct enzyme linked immunosorbent assay format. We found that PVX-lipo formulations were more sensitive than the chemically synthesized immunodominant peptide and equally specific when used to distinguish between healthy individuals and SjS patients. Our novel assay therefore allows the diagnosis of SjS using a simple, low-invasive serum test, contrasting with the invasive labial biopsy required for current tests. Our results demonstrate that nanomaterials based on plant viruses can be used as diagnostic reagents for SjS, and could also be developed for the diagnosis of other diseases.

No MeSH data available.


Related in: MedlinePlus

PVX-lipo ELISA results using sera from a subgroup of 18 pSjS patients at four time points to determine assay stability. (A) Each serum sample was tested three times at each time point; average values of optical density are graphed on the y axis. Blue = 24 h, red = 15 days, green = 30 days, and purple = 60 days. (B) Data set reporting the graphed data in (A) for each time point and each patient.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4664701&req=5

Figure 4: PVX-lipo ELISA results using sera from a subgroup of 18 pSjS patients at four time points to determine assay stability. (A) Each serum sample was tested three times at each time point; average values of optical density are graphed on the y axis. Blue = 24 h, red = 15 days, green = 30 days, and purple = 60 days. (B) Data set reporting the graphed data in (A) for each time point and each patient.

Mentions: Finally, to demonstrate the stability and reproducibility of the VNP-based ELISA, microtiter plates were coated with PVX-lipo, stored at 4°C and then used after 1, 15, 30, and 60 days to test the sera from 18 SjS patients. The results of these tests did not change regardless of the duration of storage, confirming the stability of the PVX-based ELISA format and the reproducibility of the assay (Figure 4).


Plant-Derived Chimeric Virus Particles for the Diagnosis of Primary Sjögren Syndrome.

Tinazzi E, Merlin M, Bason C, Beri R, Zampieri R, Lico C, Bartoloni E, Puccetti A, Lunardi C, Pezzotti M, Avesani L - Front Plant Sci (2015)

PVX-lipo ELISA results using sera from a subgroup of 18 pSjS patients at four time points to determine assay stability. (A) Each serum sample was tested three times at each time point; average values of optical density are graphed on the y axis. Blue = 24 h, red = 15 days, green = 30 days, and purple = 60 days. (B) Data set reporting the graphed data in (A) for each time point and each patient.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4664701&req=5

Figure 4: PVX-lipo ELISA results using sera from a subgroup of 18 pSjS patients at four time points to determine assay stability. (A) Each serum sample was tested three times at each time point; average values of optical density are graphed on the y axis. Blue = 24 h, red = 15 days, green = 30 days, and purple = 60 days. (B) Data set reporting the graphed data in (A) for each time point and each patient.
Mentions: Finally, to demonstrate the stability and reproducibility of the VNP-based ELISA, microtiter plates were coated with PVX-lipo, stored at 4°C and then used after 1, 15, 30, and 60 days to test the sera from 18 SjS patients. The results of these tests did not change regardless of the duration of storage, confirming the stability of the PVX-based ELISA format and the reproducibility of the assay (Figure 4).

Bottom Line: Plants are ideal for the production of protein-based nanomaterials because they synthesize and assemble complex multimeric proteins that cannot be expressed efficiently using other platforms.We found that PVX-lipo formulations were more sensitive than the chemically synthesized immunodominant peptide and equally specific when used to distinguish between healthy individuals and SjS patients.Our results demonstrate that nanomaterials based on plant viruses can be used as diagnostic reagents for SjS, and could also be developed for the diagnosis of other diseases.

View Article: PubMed Central - PubMed

Affiliation: Department of Medicine, University of Verona Verona, Italy.

ABSTRACT
Plants are ideal for the production of protein-based nanomaterials because they synthesize and assemble complex multimeric proteins that cannot be expressed efficiently using other platforms. Plant viruses can be thought of as self-replicating proteinaceous nanomaterials generally stable and easily produced in high titers. We used Potato virus X (PVX), chimeric virus particles, and Cowpea mosaic virus, empty virus-like particles to display a linear peptide (lipo) derived from human lipocalin, which is immunodominant in Sjögren's syndrome (SjS) and is thus recognized by autoantibodies in SjS patient serum. These virus-derived nanoparticles were thus used to develop a diagnostic assay for SjS based on a direct enzyme linked immunosorbent assay format. We found that PVX-lipo formulations were more sensitive than the chemically synthesized immunodominant peptide and equally specific when used to distinguish between healthy individuals and SjS patients. Our novel assay therefore allows the diagnosis of SjS using a simple, low-invasive serum test, contrasting with the invasive labial biopsy required for current tests. Our results demonstrate that nanomaterials based on plant viruses can be used as diagnostic reagents for SjS, and could also be developed for the diagnosis of other diseases.

No MeSH data available.


Related in: MedlinePlus