Limits...
Plant-Derived Chimeric Virus Particles for the Diagnosis of Primary Sjögren Syndrome.

Tinazzi E, Merlin M, Bason C, Beri R, Zampieri R, Lico C, Bartoloni E, Puccetti A, Lunardi C, Pezzotti M, Avesani L - Front Plant Sci (2015)

Bottom Line: Plants are ideal for the production of protein-based nanomaterials because they synthesize and assemble complex multimeric proteins that cannot be expressed efficiently using other platforms.We found that PVX-lipo formulations were more sensitive than the chemically synthesized immunodominant peptide and equally specific when used to distinguish between healthy individuals and SjS patients.Our results demonstrate that nanomaterials based on plant viruses can be used as diagnostic reagents for SjS, and could also be developed for the diagnosis of other diseases.

View Article: PubMed Central - PubMed

Affiliation: Department of Medicine, University of Verona Verona, Italy.

ABSTRACT
Plants are ideal for the production of protein-based nanomaterials because they synthesize and assemble complex multimeric proteins that cannot be expressed efficiently using other platforms. Plant viruses can be thought of as self-replicating proteinaceous nanomaterials generally stable and easily produced in high titers. We used Potato virus X (PVX), chimeric virus particles, and Cowpea mosaic virus, empty virus-like particles to display a linear peptide (lipo) derived from human lipocalin, which is immunodominant in Sjögren's syndrome (SjS) and is thus recognized by autoantibodies in SjS patient serum. These virus-derived nanoparticles were thus used to develop a diagnostic assay for SjS based on a direct enzyme linked immunosorbent assay format. We found that PVX-lipo formulations were more sensitive than the chemically synthesized immunodominant peptide and equally specific when used to distinguish between healthy individuals and SjS patients. Our novel assay therefore allows the diagnosis of SjS using a simple, low-invasive serum test, contrasting with the invasive labial biopsy required for current tests. Our results demonstrate that nanomaterials based on plant viruses can be used as diagnostic reagents for SjS, and could also be developed for the diagnosis of other diseases.

No MeSH data available.


Related in: MedlinePlus

PVX-lipo ELISA results using sera from different cohorts of patients and controls, expressed in box-plot as mean absorbance (optical density) ± SD. 1 = pSjS patients (n = 91), 2 = healthy donors (n = 60), 3 = RA patients (n = 20), 4 = SSc patients (n = 20), and 5 = SLE patients (n = 20).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4664701&req=5

Figure 3: PVX-lipo ELISA results using sera from different cohorts of patients and controls, expressed in box-plot as mean absorbance (optical density) ± SD. 1 = pSjS patients (n = 91), 2 = healthy donors (n = 60), 3 = RA patients (n = 20), 4 = SSc patients (n = 20), and 5 = SLE patients (n = 20).

Mentions: We compared the PVX platform with the synthetic peptide to evaluate the sensitivity and specificity of each ELISA. We found that 90/91 patients with pSjS were correctly shown to possess serum antibodies against lipocalin using the chimeric PVX particles, whereas 79/91 were identified using the lipocalin peptide alone. These results corresponded to a sensitivity of 86.8% for the synthetic peptide and 98.8% for the PVX-lipo particles (Table 2). Neither the synthetic peptide nor the PVX-lipo particles were recognized by sera from healthy donors. The proportion of positive results in the alternative systemic autoimmune disease cohort was fewer than 10% of the SLE patients, corresponding to the occurrence of sSjS, in agreement with our previous data (Suresh et al., 2015), (Figure 3; Supplementary Table S1). Autoimmune reactivity against the lipo peptide therefore appears to be largely confined to the pSjS patient population. The specificity of quantitative analysis was 90% for both the PVX-lipo and synthetic lipocalin peptide ELISAs (Table 2).


Plant-Derived Chimeric Virus Particles for the Diagnosis of Primary Sjögren Syndrome.

Tinazzi E, Merlin M, Bason C, Beri R, Zampieri R, Lico C, Bartoloni E, Puccetti A, Lunardi C, Pezzotti M, Avesani L - Front Plant Sci (2015)

PVX-lipo ELISA results using sera from different cohorts of patients and controls, expressed in box-plot as mean absorbance (optical density) ± SD. 1 = pSjS patients (n = 91), 2 = healthy donors (n = 60), 3 = RA patients (n = 20), 4 = SSc patients (n = 20), and 5 = SLE patients (n = 20).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4664701&req=5

Figure 3: PVX-lipo ELISA results using sera from different cohorts of patients and controls, expressed in box-plot as mean absorbance (optical density) ± SD. 1 = pSjS patients (n = 91), 2 = healthy donors (n = 60), 3 = RA patients (n = 20), 4 = SSc patients (n = 20), and 5 = SLE patients (n = 20).
Mentions: We compared the PVX platform with the synthetic peptide to evaluate the sensitivity and specificity of each ELISA. We found that 90/91 patients with pSjS were correctly shown to possess serum antibodies against lipocalin using the chimeric PVX particles, whereas 79/91 were identified using the lipocalin peptide alone. These results corresponded to a sensitivity of 86.8% for the synthetic peptide and 98.8% for the PVX-lipo particles (Table 2). Neither the synthetic peptide nor the PVX-lipo particles were recognized by sera from healthy donors. The proportion of positive results in the alternative systemic autoimmune disease cohort was fewer than 10% of the SLE patients, corresponding to the occurrence of sSjS, in agreement with our previous data (Suresh et al., 2015), (Figure 3; Supplementary Table S1). Autoimmune reactivity against the lipo peptide therefore appears to be largely confined to the pSjS patient population. The specificity of quantitative analysis was 90% for both the PVX-lipo and synthetic lipocalin peptide ELISAs (Table 2).

Bottom Line: Plants are ideal for the production of protein-based nanomaterials because they synthesize and assemble complex multimeric proteins that cannot be expressed efficiently using other platforms.We found that PVX-lipo formulations were more sensitive than the chemically synthesized immunodominant peptide and equally specific when used to distinguish between healthy individuals and SjS patients.Our results demonstrate that nanomaterials based on plant viruses can be used as diagnostic reagents for SjS, and could also be developed for the diagnosis of other diseases.

View Article: PubMed Central - PubMed

Affiliation: Department of Medicine, University of Verona Verona, Italy.

ABSTRACT
Plants are ideal for the production of protein-based nanomaterials because they synthesize and assemble complex multimeric proteins that cannot be expressed efficiently using other platforms. Plant viruses can be thought of as self-replicating proteinaceous nanomaterials generally stable and easily produced in high titers. We used Potato virus X (PVX), chimeric virus particles, and Cowpea mosaic virus, empty virus-like particles to display a linear peptide (lipo) derived from human lipocalin, which is immunodominant in Sjögren's syndrome (SjS) and is thus recognized by autoantibodies in SjS patient serum. These virus-derived nanoparticles were thus used to develop a diagnostic assay for SjS based on a direct enzyme linked immunosorbent assay format. We found that PVX-lipo formulations were more sensitive than the chemically synthesized immunodominant peptide and equally specific when used to distinguish between healthy individuals and SjS patients. Our novel assay therefore allows the diagnosis of SjS using a simple, low-invasive serum test, contrasting with the invasive labial biopsy required for current tests. Our results demonstrate that nanomaterials based on plant viruses can be used as diagnostic reagents for SjS, and could also be developed for the diagnosis of other diseases.

No MeSH data available.


Related in: MedlinePlus