Limits...
Altered Hippocampal Neurogenesis and Amygdalar Neuronal Activity in Adult Mice with Repeated Experience of Aggression.

Smagin DA, Park JH, Michurina TV, Peunova N, Glass Z, Sayed K, Bondar NP, Kovalenko IN, Kudryavtseva NN, Enikolopov G - Front Neurosci (2015)

Bottom Line: Positive fighting experience results in increased levels of progenitor cell proliferation and production of young neurons in the hippocampus.Furthermore, repeated winning experience decreases the number of activated (c-fos-positive) cells in the basolateral amygdala and increases the number of activated cells in the hippocampus; a subsequent no-fight period restores the number of c-fos-positive cells.Our results indicate that extended positive fighting experience in a social conflict heightens aggression, increases proliferation of neuronal progenitors and production of young neurons in the hippocampus, and decreases neuronal activity in the amygdala; these changes can be modified by depriving the winners of the opportunity for further fights.

View Article: PubMed Central - PubMed

Affiliation: Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences Novosibirsk, Russia ; Department of Nano-, Bio-, Information Technology and Cognitive Science, Moscow Institute of Physics and Technology Moscow, Russia ; Cold Spring Harbor Laboratory, Cold Spring Harbor NY, USA.

ABSTRACT
Repeated experience of winning in a social conflict setting elevates levels of aggression and may lead to violent behavioral patterns. Here, we use a paradigm of repeated aggression and fighting deprivation to examine changes in behavior, neurogenesis, and neuronal activity in mice with positive fighting experience. We show that for males, repeated positive fighting experience induces persistent demonstration of aggression and stereotypic behaviors in daily agonistic interactions, enhances aggressive motivation, and elevates levels of anxiety. When winning males are deprived of opportunities to engage in further fights, they demonstrate increased levels of aggressiveness. Positive fighting experience results in increased levels of progenitor cell proliferation and production of young neurons in the hippocampus. This increase is not diminished after a fighting deprivation period. Furthermore, repeated winning experience decreases the number of activated (c-fos-positive) cells in the basolateral amygdala and increases the number of activated cells in the hippocampus; a subsequent no-fight period restores the number of c-fos-positive cells. Our results indicate that extended positive fighting experience in a social conflict heightens aggression, increases proliferation of neuronal progenitors and production of young neurons in the hippocampus, and decreases neuronal activity in the amygdala; these changes can be modified by depriving the winners of the opportunity for further fights.

No MeSH data available.


Related in: MedlinePlus

BrdU-positive cells in the SGZ of the DG of control and winning males of four lines (captions). *P < 0.05, t-test.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4664700&req=5

Figure 2: BrdU-positive cells in the SGZ of the DG of control and winning males of four lines (captions). *P < 0.05, t-test.

Mentions: In male rodents, DG of the hippocampus, a site of ongoing neurogenesis in the adult brain, responds to social defeat stress by a decrease in production of new neurons, whereas an elevated social status correlates with increased level of cell division in the DG (Kozorovitskiy and Gould, 2004; Veenema et al., 2004, 2007; Yap et al., 2006; Lagace et al., 2010; Samuels and Hen, 2011; Cameron and Glover, 2015). Therefore, we compared division of stem and progenitor cells in the DG of control and winner groups of animals by labeling dividing cells with thymidine analog BrdU. For all four analyzed lines we found a significant increase in the number of BrdU cells in the DG of winners (t = 2.81, P < 0.018 for C57BL/Icg; t = 2.92, P < 0.015 for C57BL/6J; t = 2.583, P < 0.033 for Nestin-GFP, and t = 2.34, P < 0.036 for Nestin-GFPhet), ranging from 24% in Nestin-GFPhet to 90% in Nestin-GFP animals (Figure 2).


Altered Hippocampal Neurogenesis and Amygdalar Neuronal Activity in Adult Mice with Repeated Experience of Aggression.

Smagin DA, Park JH, Michurina TV, Peunova N, Glass Z, Sayed K, Bondar NP, Kovalenko IN, Kudryavtseva NN, Enikolopov G - Front Neurosci (2015)

BrdU-positive cells in the SGZ of the DG of control and winning males of four lines (captions). *P < 0.05, t-test.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4664700&req=5

Figure 2: BrdU-positive cells in the SGZ of the DG of control and winning males of four lines (captions). *P < 0.05, t-test.
Mentions: In male rodents, DG of the hippocampus, a site of ongoing neurogenesis in the adult brain, responds to social defeat stress by a decrease in production of new neurons, whereas an elevated social status correlates with increased level of cell division in the DG (Kozorovitskiy and Gould, 2004; Veenema et al., 2004, 2007; Yap et al., 2006; Lagace et al., 2010; Samuels and Hen, 2011; Cameron and Glover, 2015). Therefore, we compared division of stem and progenitor cells in the DG of control and winner groups of animals by labeling dividing cells with thymidine analog BrdU. For all four analyzed lines we found a significant increase in the number of BrdU cells in the DG of winners (t = 2.81, P < 0.018 for C57BL/Icg; t = 2.92, P < 0.015 for C57BL/6J; t = 2.583, P < 0.033 for Nestin-GFP, and t = 2.34, P < 0.036 for Nestin-GFPhet), ranging from 24% in Nestin-GFPhet to 90% in Nestin-GFP animals (Figure 2).

Bottom Line: Positive fighting experience results in increased levels of progenitor cell proliferation and production of young neurons in the hippocampus.Furthermore, repeated winning experience decreases the number of activated (c-fos-positive) cells in the basolateral amygdala and increases the number of activated cells in the hippocampus; a subsequent no-fight period restores the number of c-fos-positive cells.Our results indicate that extended positive fighting experience in a social conflict heightens aggression, increases proliferation of neuronal progenitors and production of young neurons in the hippocampus, and decreases neuronal activity in the amygdala; these changes can be modified by depriving the winners of the opportunity for further fights.

View Article: PubMed Central - PubMed

Affiliation: Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences Novosibirsk, Russia ; Department of Nano-, Bio-, Information Technology and Cognitive Science, Moscow Institute of Physics and Technology Moscow, Russia ; Cold Spring Harbor Laboratory, Cold Spring Harbor NY, USA.

ABSTRACT
Repeated experience of winning in a social conflict setting elevates levels of aggression and may lead to violent behavioral patterns. Here, we use a paradigm of repeated aggression and fighting deprivation to examine changes in behavior, neurogenesis, and neuronal activity in mice with positive fighting experience. We show that for males, repeated positive fighting experience induces persistent demonstration of aggression and stereotypic behaviors in daily agonistic interactions, enhances aggressive motivation, and elevates levels of anxiety. When winning males are deprived of opportunities to engage in further fights, they demonstrate increased levels of aggressiveness. Positive fighting experience results in increased levels of progenitor cell proliferation and production of young neurons in the hippocampus. This increase is not diminished after a fighting deprivation period. Furthermore, repeated winning experience decreases the number of activated (c-fos-positive) cells in the basolateral amygdala and increases the number of activated cells in the hippocampus; a subsequent no-fight period restores the number of c-fos-positive cells. Our results indicate that extended positive fighting experience in a social conflict heightens aggression, increases proliferation of neuronal progenitors and production of young neurons in the hippocampus, and decreases neuronal activity in the amygdala; these changes can be modified by depriving the winners of the opportunity for further fights.

No MeSH data available.


Related in: MedlinePlus