Limits...
A Homoploid Hybrid Between Wild Vigna Species Found in a Limestone Karst.

Takahashi Y, Iseki K, Kitazawa K, Muto C, Somta P, Irie K, Naito K, Tomooka N - Front Plant Sci (2015)

Bottom Line: Genus Vigna comprise several domesticated species including cowpea and mungbean, and diverse wild species.We found an introgressive hybrid population derived from two wild species, Vigna umbellata and Vigna exilis, in Ratchaburi district, Thailand.We found the hybrid acquired vigorous growth from V. umbellata and drought tolerance plus early flowering from V. exilis, and thus has taken over some habitats of V. exilis in limestone karsts.

View Article: PubMed Central - PubMed

Affiliation: Genetic Resources Center, National Institute of Agrobiological Sciences Tsukuba, Japan.

ABSTRACT
Genus Vigna comprise several domesticated species including cowpea and mungbean, and diverse wild species. We found an introgressive hybrid population derived from two wild species, Vigna umbellata and Vigna exilis, in Ratchaburi district, Thailand. The hybrid was morphologically similar to V. umbellata but habituated in a limestone rock mountain, which is usually dominated by V. exilis. Analyzing simple sequence repeat loci indicated the hybrid has undergone at least one round of backcross by V. umbellata. We found the hybrid acquired vigorous growth from V. umbellata and drought tolerance plus early flowering from V. exilis, and thus has taken over some habitats of V. exilis in limestone karsts. Given the wide crossability of V. umbellata, the hybrid can be a valuable genetic resource to improve drought tolerance of some domesticated species.

No MeSH data available.


The effect of drought stress on V. umbellata, V. exilis, and the unidentified accession. Photo was taken on the 4th day after drought onset (A). The effect of drought stress on relative green area (B), stomatal conductance (gs) (C), maximum quantum yield of photosystem II (Fv/Fm) (D), and relative water content (E). The values are presented as means ± standard error (SE); n = 5 for gs, relative green area and Fv/Fm; and n = 3 for relative water content. Bars with different letters are significantly different, denoted by P < 0.01 according to Turkey's range test.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4664699&req=5

Figure 5: The effect of drought stress on V. umbellata, V. exilis, and the unidentified accession. Photo was taken on the 4th day after drought onset (A). The effect of drought stress on relative green area (B), stomatal conductance (gs) (C), maximum quantum yield of photosystem II (Fv/Fm) (D), and relative water content (E). The values are presented as means ± standard error (SE); n = 5 for gs, relative green area and Fv/Fm; and n = 3 for relative water content. Bars with different letters are significantly different, denoted by P < 0.01 according to Turkey's range test.

Mentions: As a result, the drought tolerance obviously differed among the accessions. On the 4th day V. umbellata was almost totally senescent, whereas V. exilis and the unidentified accession showed little symptoms of senescence (Figure 5A). Although the relative green areas decreased faster in the unidentified accession than in V. exilis, it decreased more rapidly in V. umbellata than both the others (Figure 5B). The half-life of the relative green areas was 3 days in V. umbellata, whereas those in V. exilis and the unidentified accession were 6 and 5 days, respectively (Figure 5B). All the accessions showed rapid decline of stomatal conductance [gs] which were decreased by 90% within two days after drought onset (Figure 5C). On the other hand, we observed great differences in the values of maximum quantum yields [Fv/Fm] (Figure 5D). The Fv/Fm in V. umbellata started to decrease on the 3rd day and fell down to almost zero on the 5th day, whereas those in V. exilis and the unidentified accession showed little decrease during the same period. We also measured relative water content (RWC) on the 4th day and found it was significantly different from each other. RWC was the lowest in V. umbellata, the unidentified accession in the middle, and the highest in V. exilis (Figure 5E).


A Homoploid Hybrid Between Wild Vigna Species Found in a Limestone Karst.

Takahashi Y, Iseki K, Kitazawa K, Muto C, Somta P, Irie K, Naito K, Tomooka N - Front Plant Sci (2015)

The effect of drought stress on V. umbellata, V. exilis, and the unidentified accession. Photo was taken on the 4th day after drought onset (A). The effect of drought stress on relative green area (B), stomatal conductance (gs) (C), maximum quantum yield of photosystem II (Fv/Fm) (D), and relative water content (E). The values are presented as means ± standard error (SE); n = 5 for gs, relative green area and Fv/Fm; and n = 3 for relative water content. Bars with different letters are significantly different, denoted by P < 0.01 according to Turkey's range test.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4664699&req=5

Figure 5: The effect of drought stress on V. umbellata, V. exilis, and the unidentified accession. Photo was taken on the 4th day after drought onset (A). The effect of drought stress on relative green area (B), stomatal conductance (gs) (C), maximum quantum yield of photosystem II (Fv/Fm) (D), and relative water content (E). The values are presented as means ± standard error (SE); n = 5 for gs, relative green area and Fv/Fm; and n = 3 for relative water content. Bars with different letters are significantly different, denoted by P < 0.01 according to Turkey's range test.
Mentions: As a result, the drought tolerance obviously differed among the accessions. On the 4th day V. umbellata was almost totally senescent, whereas V. exilis and the unidentified accession showed little symptoms of senescence (Figure 5A). Although the relative green areas decreased faster in the unidentified accession than in V. exilis, it decreased more rapidly in V. umbellata than both the others (Figure 5B). The half-life of the relative green areas was 3 days in V. umbellata, whereas those in V. exilis and the unidentified accession were 6 and 5 days, respectively (Figure 5B). All the accessions showed rapid decline of stomatal conductance [gs] which were decreased by 90% within two days after drought onset (Figure 5C). On the other hand, we observed great differences in the values of maximum quantum yields [Fv/Fm] (Figure 5D). The Fv/Fm in V. umbellata started to decrease on the 3rd day and fell down to almost zero on the 5th day, whereas those in V. exilis and the unidentified accession showed little decrease during the same period. We also measured relative water content (RWC) on the 4th day and found it was significantly different from each other. RWC was the lowest in V. umbellata, the unidentified accession in the middle, and the highest in V. exilis (Figure 5E).

Bottom Line: Genus Vigna comprise several domesticated species including cowpea and mungbean, and diverse wild species.We found an introgressive hybrid population derived from two wild species, Vigna umbellata and Vigna exilis, in Ratchaburi district, Thailand.We found the hybrid acquired vigorous growth from V. umbellata and drought tolerance plus early flowering from V. exilis, and thus has taken over some habitats of V. exilis in limestone karsts.

View Article: PubMed Central - PubMed

Affiliation: Genetic Resources Center, National Institute of Agrobiological Sciences Tsukuba, Japan.

ABSTRACT
Genus Vigna comprise several domesticated species including cowpea and mungbean, and diverse wild species. We found an introgressive hybrid population derived from two wild species, Vigna umbellata and Vigna exilis, in Ratchaburi district, Thailand. The hybrid was morphologically similar to V. umbellata but habituated in a limestone rock mountain, which is usually dominated by V. exilis. Analyzing simple sequence repeat loci indicated the hybrid has undergone at least one round of backcross by V. umbellata. We found the hybrid acquired vigorous growth from V. umbellata and drought tolerance plus early flowering from V. exilis, and thus has taken over some habitats of V. exilis in limestone karsts. Given the wide crossability of V. umbellata, the hybrid can be a valuable genetic resource to improve drought tolerance of some domesticated species.

No MeSH data available.