Limits...
Bacterial Colonies in Solid Media and Foods: A Review on Their Growth and Interactions with the Micro-Environment.

Jeanson S, Floury J, Gagnaire V, Lortal S, Thierry A - Front Microbiol (2015)

Bottom Line: The following conclusions have been brought to light.By studying the literature, we concluded that there systematically exists a threshold that distinguishes micro-colonies (radius < 100-200 μm) from macro-colonies (radius >200 μm).In conclusion, the impact of immobilization is predominant for macro-colonies in comparison with micro-colonies.

View Article: PubMed Central - PubMed

Affiliation: INRA, UMR1253, Science and Technology of Milk and Eggs Rennes, France ; AGROCAMPUS OUEST, UMR1253, Science and Technology of Milk and Eggs Rennes, France.

ABSTRACT
Bacteria, either indigenous or added, are immobilized in solid foods where they grow as colonies. Since the 80's, relatively few research groups have explored the implications of bacteria growing as colonies and mostly focused on pathogens in large colonies on agar/gelatine media. It is only recently that high resolution imaging techniques and biophysical characterization techniques increased the understanding of the growth of bacterial colonies, for different sizes of colonies, at the microscopic level and even down to the molecular level. This review covers the studies on bacterial colony growth in agar or gelatine media mimicking the food environment and in model cheese. The following conclusions have been brought to light. Firstly, under unfavorable conditions, mimicking food conditions, the immobilization of bacteria always constrains their growth in comparison with planktonic growth and increases the sensibility of bacteria to environmental stresses. Secondly, the spatial distribution describes both the distance between colonies and the size of the colonies as a function of the initial level of population. By studying the literature, we concluded that there systematically exists a threshold that distinguishes micro-colonies (radius < 100-200 μm) from macro-colonies (radius >200 μm). Micro-colonies growth resembles planktonic growth and no pH microgradients could be observed. Macro-colonies growth is slower than planktonic growth and pH microgradients could be observed in and around them due to diffusion limitations which occur around, but also inside the macro-colonies. Diffusion limitations of milk proteins have been demonstrated in a model cheese around and in the bacterial colonies. In conclusion, the impact of immobilization is predominant for macro-colonies in comparison with micro-colonies. However, the interaction between the colonies and the food matrix itself remains to be further investigated at the microscopic scale.

No MeSH data available.


Related in: MedlinePlus

Growth/No growth regions of Listeria monocytogenes in broth (solid line) and in agar (dotted line) medium at 25°C as a function of pH and aw, (modified by increasing the NaCl concentration). Adapted from Koutsoumanis et al. (2004).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4664638&req=5

Figure 4: Growth/No growth regions of Listeria monocytogenes in broth (solid line) and in agar (dotted line) medium at 25°C as a function of pH and aw, (modified by increasing the NaCl concentration). Adapted from Koutsoumanis et al. (2004).

Mentions: Similarly, a strain of L. monocytogenes always displayed a lower growth rate when in submerged colonies than in the planktonic form regardless of the sucrose concentration (ranging from 0 to 60%) and the initial pH of the medium. Furthermore, the minimal pH for enabling growth was higher (pH = 5) in colonies than in a planktonic culture (Meldrum et al., 2003). L. monocytogenes growth was also shown to be affected by immobilization at low pH and low aw (Koutsoumanis et al., 2004) as shown on Figure 4. However, in this study, aw had been decreased by increasing the NaCl concentration, the harmful effects of both the NaCl and a low aw were thus combined.


Bacterial Colonies in Solid Media and Foods: A Review on Their Growth and Interactions with the Micro-Environment.

Jeanson S, Floury J, Gagnaire V, Lortal S, Thierry A - Front Microbiol (2015)

Growth/No growth regions of Listeria monocytogenes in broth (solid line) and in agar (dotted line) medium at 25°C as a function of pH and aw, (modified by increasing the NaCl concentration). Adapted from Koutsoumanis et al. (2004).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4664638&req=5

Figure 4: Growth/No growth regions of Listeria monocytogenes in broth (solid line) and in agar (dotted line) medium at 25°C as a function of pH and aw, (modified by increasing the NaCl concentration). Adapted from Koutsoumanis et al. (2004).
Mentions: Similarly, a strain of L. monocytogenes always displayed a lower growth rate when in submerged colonies than in the planktonic form regardless of the sucrose concentration (ranging from 0 to 60%) and the initial pH of the medium. Furthermore, the minimal pH for enabling growth was higher (pH = 5) in colonies than in a planktonic culture (Meldrum et al., 2003). L. monocytogenes growth was also shown to be affected by immobilization at low pH and low aw (Koutsoumanis et al., 2004) as shown on Figure 4. However, in this study, aw had been decreased by increasing the NaCl concentration, the harmful effects of both the NaCl and a low aw were thus combined.

Bottom Line: The following conclusions have been brought to light.By studying the literature, we concluded that there systematically exists a threshold that distinguishes micro-colonies (radius < 100-200 μm) from macro-colonies (radius >200 μm).In conclusion, the impact of immobilization is predominant for macro-colonies in comparison with micro-colonies.

View Article: PubMed Central - PubMed

Affiliation: INRA, UMR1253, Science and Technology of Milk and Eggs Rennes, France ; AGROCAMPUS OUEST, UMR1253, Science and Technology of Milk and Eggs Rennes, France.

ABSTRACT
Bacteria, either indigenous or added, are immobilized in solid foods where they grow as colonies. Since the 80's, relatively few research groups have explored the implications of bacteria growing as colonies and mostly focused on pathogens in large colonies on agar/gelatine media. It is only recently that high resolution imaging techniques and biophysical characterization techniques increased the understanding of the growth of bacterial colonies, for different sizes of colonies, at the microscopic level and even down to the molecular level. This review covers the studies on bacterial colony growth in agar or gelatine media mimicking the food environment and in model cheese. The following conclusions have been brought to light. Firstly, under unfavorable conditions, mimicking food conditions, the immobilization of bacteria always constrains their growth in comparison with planktonic growth and increases the sensibility of bacteria to environmental stresses. Secondly, the spatial distribution describes both the distance between colonies and the size of the colonies as a function of the initial level of population. By studying the literature, we concluded that there systematically exists a threshold that distinguishes micro-colonies (radius < 100-200 μm) from macro-colonies (radius >200 μm). Micro-colonies growth resembles planktonic growth and no pH microgradients could be observed. Macro-colonies growth is slower than planktonic growth and pH microgradients could be observed in and around them due to diffusion limitations which occur around, but also inside the macro-colonies. Diffusion limitations of milk proteins have been demonstrated in a model cheese around and in the bacterial colonies. In conclusion, the impact of immobilization is predominant for macro-colonies in comparison with micro-colonies. However, the interaction between the colonies and the food matrix itself remains to be further investigated at the microscopic scale.

No MeSH data available.


Related in: MedlinePlus