Limits...
DNP-KLH Yields Changes in Leukocyte Populations and Immunoglobulin Isotype Use with Different Immunization Routes in Zebrafish.

Weir H, Chen PL, Deiss TC, Jacobs N, Nabity MB, Young M, Criscitiello MF - Front Immunol (2015)

Bottom Line: Both immunoglobulin isotypes and the B cell activating factor gene transcription was induced in fish injected with antigen as compared to saline injected or antigen immersed fish, though these failed to reach statistical significance.Here we provide additional reference hematology for this model species.Differential blood counts revealed a greater lymphocyte percentage in both i.p. and immersed fish, with increase in large lymphocyte counts and decrease in neutrophils.

View Article: PubMed Central - PubMed

Affiliation: Comparative Immunogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA ; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA ; Department of Science, A&M Consolidated High School , College Station, TX , USA.

ABSTRACT
Distinct methods are required for inducing mucosal versus systemic immunity in mammals for vaccine protection at the tissues most commonly breached by pathogens. Understanding of mucosal immunization in teleost fish is needed to combat aquaculture disease, understand emerging ecological threats, and know how vertebrate adaptive immunity evolved. Here, we quantitatively measured expression levels of IgM as well as the teleost mucosal immunoglobulin, IgZ/IgT, in zebrafish given an antigen systemically via intraperitoneal (i.p.) injection or mucosally via bath immersion. Both immunoglobulin isotypes and the B cell activating factor gene transcription was induced in fish injected with antigen as compared to saline injected or antigen immersed fish, though these failed to reach statistical significance. Here we provide additional reference hematology for this model species. Differential blood counts revealed a greater lymphocyte percentage in both i.p. and immersed fish, with increase in large lymphocyte counts and decrease in neutrophils. These humoral adaptive gene transcription and cytological data should provide a foundation for more studies connecting immunology in this dominant developmental and genetic fish model to other species where mucosal immunization is of greater commercial importance.

No MeSH data available.


Related in: MedlinePlus

Zebrafish hematology. Wright/Giemsa stained zebrafish blood smears (A–C) Differentiating small lymphocytes (green arrows) from thrombocytes (red arrows). Immature reticulocytes are also seen (blue arrows) (D–G). Neutrophils (orange arrows) are typically seen with bilobed nuclei, whereas large mononuclear cells (yellow arrow) have a round nucleus. Blood smear images were captured under 1000× total magnification with oil.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4664633&req=5

Figure 1: Zebrafish hematology. Wright/Giemsa stained zebrafish blood smears (A–C) Differentiating small lymphocytes (green arrows) from thrombocytes (red arrows). Immature reticulocytes are also seen (blue arrows) (D–G). Neutrophils (orange arrows) are typically seen with bilobed nuclei, whereas large mononuclear cells (yellow arrow) have a round nucleus. Blood smear images were captured under 1000× total magnification with oil.

Mentions: Unlike mammalian blood smears, fish exhibit nucleated erythrocytes and thrombocytes instead of platelets (37). Lymphocytes contained a small amount of blue cytoplasm containing granules, had round nuclei that could be indented and, in contrast to thrombocytes, displayed a stippled or smudged chromatin (Figure 1). Categorization of thrombocytes was aided by their scant amount of clear to light blue cytoplasm and indistinct cell borders, “glassy” chromatin pattern, round to elongate nucleus, and frequent presence in clumps. Immature erythrocytes on the other hand contained ample cytoplasm. Large mononuclear cells were evident that are presumed large lymphocytes containing a moderate amount of dark blue cytoplasm, often with vacuoles and a round or irregular nucleus. Small lymphocytes contained similarly dark stained nucleus but with less cytoplasm. Neutrophils contained a light pink to light blue cytoplasm and usually a bilobed or banded nucleus, although some neutrophil nuclei were round.


DNP-KLH Yields Changes in Leukocyte Populations and Immunoglobulin Isotype Use with Different Immunization Routes in Zebrafish.

Weir H, Chen PL, Deiss TC, Jacobs N, Nabity MB, Young M, Criscitiello MF - Front Immunol (2015)

Zebrafish hematology. Wright/Giemsa stained zebrafish blood smears (A–C) Differentiating small lymphocytes (green arrows) from thrombocytes (red arrows). Immature reticulocytes are also seen (blue arrows) (D–G). Neutrophils (orange arrows) are typically seen with bilobed nuclei, whereas large mononuclear cells (yellow arrow) have a round nucleus. Blood smear images were captured under 1000× total magnification with oil.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4664633&req=5

Figure 1: Zebrafish hematology. Wright/Giemsa stained zebrafish blood smears (A–C) Differentiating small lymphocytes (green arrows) from thrombocytes (red arrows). Immature reticulocytes are also seen (blue arrows) (D–G). Neutrophils (orange arrows) are typically seen with bilobed nuclei, whereas large mononuclear cells (yellow arrow) have a round nucleus. Blood smear images were captured under 1000× total magnification with oil.
Mentions: Unlike mammalian blood smears, fish exhibit nucleated erythrocytes and thrombocytes instead of platelets (37). Lymphocytes contained a small amount of blue cytoplasm containing granules, had round nuclei that could be indented and, in contrast to thrombocytes, displayed a stippled or smudged chromatin (Figure 1). Categorization of thrombocytes was aided by their scant amount of clear to light blue cytoplasm and indistinct cell borders, “glassy” chromatin pattern, round to elongate nucleus, and frequent presence in clumps. Immature erythrocytes on the other hand contained ample cytoplasm. Large mononuclear cells were evident that are presumed large lymphocytes containing a moderate amount of dark blue cytoplasm, often with vacuoles and a round or irregular nucleus. Small lymphocytes contained similarly dark stained nucleus but with less cytoplasm. Neutrophils contained a light pink to light blue cytoplasm and usually a bilobed or banded nucleus, although some neutrophil nuclei were round.

Bottom Line: Both immunoglobulin isotypes and the B cell activating factor gene transcription was induced in fish injected with antigen as compared to saline injected or antigen immersed fish, though these failed to reach statistical significance.Here we provide additional reference hematology for this model species.Differential blood counts revealed a greater lymphocyte percentage in both i.p. and immersed fish, with increase in large lymphocyte counts and decrease in neutrophils.

View Article: PubMed Central - PubMed

Affiliation: Comparative Immunogenetics Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA ; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, TX , USA ; Department of Science, A&M Consolidated High School , College Station, TX , USA.

ABSTRACT
Distinct methods are required for inducing mucosal versus systemic immunity in mammals for vaccine protection at the tissues most commonly breached by pathogens. Understanding of mucosal immunization in teleost fish is needed to combat aquaculture disease, understand emerging ecological threats, and know how vertebrate adaptive immunity evolved. Here, we quantitatively measured expression levels of IgM as well as the teleost mucosal immunoglobulin, IgZ/IgT, in zebrafish given an antigen systemically via intraperitoneal (i.p.) injection or mucosally via bath immersion. Both immunoglobulin isotypes and the B cell activating factor gene transcription was induced in fish injected with antigen as compared to saline injected or antigen immersed fish, though these failed to reach statistical significance. Here we provide additional reference hematology for this model species. Differential blood counts revealed a greater lymphocyte percentage in both i.p. and immersed fish, with increase in large lymphocyte counts and decrease in neutrophils. These humoral adaptive gene transcription and cytological data should provide a foundation for more studies connecting immunology in this dominant developmental and genetic fish model to other species where mucosal immunization is of greater commercial importance.

No MeSH data available.


Related in: MedlinePlus