Limits...
Long-Lasting Cortical Reorganization as the Result of Motor Imagery of Throwing a Ball in a Virtual Tennis Court.

Cebolla AM, Petieau M, Cevallos C, Leroy A, Dan B, Cheron G - Front Psychol (2015)

Bottom Line: The N300 component was centrally localized on the scalp and was accompanied by significant phase consistency in the delta brain rhythms in the contralateral central scalp areas.The N1000 component spread wider centrally and was accompanied by a significant power decrease (or event related desynchronization) in low beta brain rhythms localized in fronto-precentral and parieto-occipital scalp areas and also by a significant power increase (or event related synchronization) in theta brain rhythms spreading fronto-centrally.The visual representation of movement formed in the minds of participants might underlie a top-down process from the fronto-central areas which is reflected by the amplitude changes observed in the fronto-central ERPs and by the significant phase synchrony in contralateral fronto-central delta and contralateral central mu to parietal theta presented here.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de Bruxelles , Brussels, Belgium.

ABSTRACT
In order to characterize the neural signature of a motor imagery (MI) task, the present study investigates for the first time the oscillation characteristics including both of the time-frequency measurements, event related spectral perturbation and intertrial coherence (ITC) underlying the variations in the temporal measurements (event related potentials, ERP) directly related to a MI task. We hypothesize that significant variations in both of the time-frequency measurements underlie the specific changes in the ERP directly related to MI. For the MI task, we chose a simple everyday task (throwing a tennis ball), that does not require any particular motor expertise, set within the controlled virtual reality scenario of a tennis court. When compared to the rest condition a consistent, long-lasting negative fronto-central ERP wave was accompanied by significant changes in both time frequency measurements suggesting long-lasting cortical activity reorganization. The ERP wave was characterized by two peaks at about 300 ms (N300) and 1000 ms (N1000). The N300 component was centrally localized on the scalp and was accompanied by significant phase consistency in the delta brain rhythms in the contralateral central scalp areas. The N1000 component spread wider centrally and was accompanied by a significant power decrease (or event related desynchronization) in low beta brain rhythms localized in fronto-precentral and parieto-occipital scalp areas and also by a significant power increase (or event related synchronization) in theta brain rhythms spreading fronto-centrally. During the transition from N300 to N1000, a contralateral alpha (mu) as well as post-central and parieto-theta rhythms occurred. The visual representation of movement formed in the minds of participants might underlie a top-down process from the fronto-central areas which is reflected by the amplitude changes observed in the fronto-central ERPs and by the significant phase synchrony in contralateral fronto-central delta and contralateral central mu to parietal theta presented here.

No MeSH data available.


Related in: MedlinePlus

ERSP and ITC time-frequency measurements in FCz. Concomitants to ERPs (up), grand averaging of ERSP (middle) and ITC (down) for the rest (left) and motor imagery of throwing (middle) condition and theirs statistical differences (on the right column). Note the red significant ERSP and ITC clusters enclosed in the intermittent lines during the significant negative ERP wave in FCz.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4664627&req=5

Figure 3: ERSP and ITC time-frequency measurements in FCz. Concomitants to ERPs (up), grand averaging of ERSP (middle) and ITC (down) for the rest (left) and motor imagery of throwing (middle) condition and theirs statistical differences (on the right column). Note the red significant ERSP and ITC clusters enclosed in the intermittent lines during the significant negative ERP wave in FCz.

Mentions: The ERSP average template of FCz (Figure 3, second row) showed that both conditions presented comparable clusters of power spectrum increase (event related synchrony, ERS) centered at 5 Hz (ranging from about 0.2–10 Hz) during the first 500 ms underlying the visual processing related P200. In “rest” condition, an alpha band of power decrease (ERD), centered at 8 Hz, was observed from 300 to 1250 ms. Interestingly, during the “throw MI” condition the alpha band of ERD was centered at a higher frequency of 10 Hz (ranging from about 7 to 14 Hz) and presented a longer duration underlying the entirety of the significant negative ERP wave. In addition, the ERSP template in the “throw MI” condition showed a slight but persistent power increase band in the 3–5 Hz frequency range. The statistical template of significant differences focused on the negative ERP wave duration (including the N300 and N1000 components). ERSP significant effects were encountered below 20 Hz. A stronger ERD was found in the high-alpha/low-beta frequency band, and a stronger ERS in the theta band during the “throw MI” with respect to the “rest” condition. The clusters of significant high alpha- low beta ERD extended from 530 to 750 ms in the 9–13 Hz range and from 1000 to 1350 ms in the 9–17 Hz range. The first ERD significant cluster had left predominance from the fronto-central to the parietal scalp areas (Figure 4, ERSP, second row). The second ERD significant cluster was localized in the fronto-precentral and parieto-occipital scalp areas (Figure 4, ERSP, third row). The clusters of significant theta ERS extended from 750 to 900 ms and 1000–1150 ms in the 3–5 Hz range with a frontal and central scalp location (Figure 4, ERSP, first row).


Long-Lasting Cortical Reorganization as the Result of Motor Imagery of Throwing a Ball in a Virtual Tennis Court.

Cebolla AM, Petieau M, Cevallos C, Leroy A, Dan B, Cheron G - Front Psychol (2015)

ERSP and ITC time-frequency measurements in FCz. Concomitants to ERPs (up), grand averaging of ERSP (middle) and ITC (down) for the rest (left) and motor imagery of throwing (middle) condition and theirs statistical differences (on the right column). Note the red significant ERSP and ITC clusters enclosed in the intermittent lines during the significant negative ERP wave in FCz.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4664627&req=5

Figure 3: ERSP and ITC time-frequency measurements in FCz. Concomitants to ERPs (up), grand averaging of ERSP (middle) and ITC (down) for the rest (left) and motor imagery of throwing (middle) condition and theirs statistical differences (on the right column). Note the red significant ERSP and ITC clusters enclosed in the intermittent lines during the significant negative ERP wave in FCz.
Mentions: The ERSP average template of FCz (Figure 3, second row) showed that both conditions presented comparable clusters of power spectrum increase (event related synchrony, ERS) centered at 5 Hz (ranging from about 0.2–10 Hz) during the first 500 ms underlying the visual processing related P200. In “rest” condition, an alpha band of power decrease (ERD), centered at 8 Hz, was observed from 300 to 1250 ms. Interestingly, during the “throw MI” condition the alpha band of ERD was centered at a higher frequency of 10 Hz (ranging from about 7 to 14 Hz) and presented a longer duration underlying the entirety of the significant negative ERP wave. In addition, the ERSP template in the “throw MI” condition showed a slight but persistent power increase band in the 3–5 Hz frequency range. The statistical template of significant differences focused on the negative ERP wave duration (including the N300 and N1000 components). ERSP significant effects were encountered below 20 Hz. A stronger ERD was found in the high-alpha/low-beta frequency band, and a stronger ERS in the theta band during the “throw MI” with respect to the “rest” condition. The clusters of significant high alpha- low beta ERD extended from 530 to 750 ms in the 9–13 Hz range and from 1000 to 1350 ms in the 9–17 Hz range. The first ERD significant cluster had left predominance from the fronto-central to the parietal scalp areas (Figure 4, ERSP, second row). The second ERD significant cluster was localized in the fronto-precentral and parieto-occipital scalp areas (Figure 4, ERSP, third row). The clusters of significant theta ERS extended from 750 to 900 ms and 1000–1150 ms in the 3–5 Hz range with a frontal and central scalp location (Figure 4, ERSP, first row).

Bottom Line: The N300 component was centrally localized on the scalp and was accompanied by significant phase consistency in the delta brain rhythms in the contralateral central scalp areas.The N1000 component spread wider centrally and was accompanied by a significant power decrease (or event related desynchronization) in low beta brain rhythms localized in fronto-precentral and parieto-occipital scalp areas and also by a significant power increase (or event related synchronization) in theta brain rhythms spreading fronto-centrally.The visual representation of movement formed in the minds of participants might underlie a top-down process from the fronto-central areas which is reflected by the amplitude changes observed in the fronto-central ERPs and by the significant phase synchrony in contralateral fronto-central delta and contralateral central mu to parietal theta presented here.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de Bruxelles , Brussels, Belgium.

ABSTRACT
In order to characterize the neural signature of a motor imagery (MI) task, the present study investigates for the first time the oscillation characteristics including both of the time-frequency measurements, event related spectral perturbation and intertrial coherence (ITC) underlying the variations in the temporal measurements (event related potentials, ERP) directly related to a MI task. We hypothesize that significant variations in both of the time-frequency measurements underlie the specific changes in the ERP directly related to MI. For the MI task, we chose a simple everyday task (throwing a tennis ball), that does not require any particular motor expertise, set within the controlled virtual reality scenario of a tennis court. When compared to the rest condition a consistent, long-lasting negative fronto-central ERP wave was accompanied by significant changes in both time frequency measurements suggesting long-lasting cortical activity reorganization. The ERP wave was characterized by two peaks at about 300 ms (N300) and 1000 ms (N1000). The N300 component was centrally localized on the scalp and was accompanied by significant phase consistency in the delta brain rhythms in the contralateral central scalp areas. The N1000 component spread wider centrally and was accompanied by a significant power decrease (or event related desynchronization) in low beta brain rhythms localized in fronto-precentral and parieto-occipital scalp areas and also by a significant power increase (or event related synchronization) in theta brain rhythms spreading fronto-centrally. During the transition from N300 to N1000, a contralateral alpha (mu) as well as post-central and parieto-theta rhythms occurred. The visual representation of movement formed in the minds of participants might underlie a top-down process from the fronto-central areas which is reflected by the amplitude changes observed in the fronto-central ERPs and by the significant phase synchrony in contralateral fronto-central delta and contralateral central mu to parietal theta presented here.

No MeSH data available.


Related in: MedlinePlus