Limits...
Perceptual Training in Beach Volleyball Defence: Different Effects of Gaze-Path Cueing on Gaze and Decision-Making.

Klostermann A, Vater C, Kredel R, Hossner EJ - Front Psychol (2015)

Bottom Line: However, recent findings challenge this method, especially, with regards to its actual effects on gaze behavior.Gaze analyses revealed learning effects for the dysfunctional group only.Hence, the results confirm cueing effects on gaze behavior, but they also question its benefit for enhancing decision-making.

View Article: PubMed Central - PubMed

Affiliation: Institute of Sport Science, University of Bern Bern, Switzerland.

ABSTRACT
For perceptual-cognitive skill training, a variety of intervention methods has been proposed, including the so-called "color-cueing method" which aims on superior gaze-path learning by applying visual markers. However, recent findings challenge this method, especially, with regards to its actual effects on gaze behavior. Consequently, after a preparatory study on the identification of appropriate visual cues for life-size displays, a perceptual-training experiment on decision-making in beach volleyball was conducted, contrasting two cueing interventions (functional vs. dysfunctional gaze path) with a conservative control condition (anticipation-related instructions). Gaze analyses revealed learning effects for the dysfunctional group only. Regarding decision-making, all groups showed enhanced performance with largest improvements for the control group followed by the functional and the dysfunctional group. Hence, the results confirm cueing effects on gaze behavior, but they also question its benefit for enhancing decision-making. However, before completely denying the method's value, optimisations should be checked regarding, for instance, cueing-pattern characteristics and gaze-related feedback.

No MeSH data available.


Related in: MedlinePlus

Functional (top) and dysfunctional (bottom) visual-cue paths at the first frame of phase P0 (set), P1 (run-up), P2 (attack), and the last frame of P2 (attack). In P0–P2 of the functional path, the ball, the attacker, and the anticipated ball-hand-contact are cued, respectively; in P0–P2 of the dysfunctional path, the ball is always cued. Original tapes were colored with red markers.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4664622&req=5

Figure 4: Functional (top) and dysfunctional (bottom) visual-cue paths at the first frame of phase P0 (set), P1 (run-up), P2 (attack), and the last frame of P2 (attack). In P0–P2 of the functional path, the ball, the attacker, and the anticipated ball-hand-contact are cued, respectively; in P0–P2 of the dysfunctional path, the ball is always cued. Original tapes were colored with red markers.

Mentions: In the experiment, as in former perceptual-learning studies, changes of an experimental cue group from pre- to post- and retention test regarding gaze behavior and decision-making needs to be compared with the respective values of a control group. In this respect, a conservative control group was preferred over a control group without any treatment. This means that the participants of the control group watched the same training videos, however, without visual cues, and they were, in addition, asked to identify crucial hints for anticipating the upcoming type of attack. Hence, this intervention can be considered as the fairest possible control as learning advantages of the experimental group would imply that gaze-path cueing actually pays off in comparison to a simple verbal instruction that promotes self-learning. Beyond this, we tried to experimentally disentangle the effect of gaze-path cueing from the learning of an optimal gaze path. For this reason, the design was completed by a third group whose participants were treated with gaze-path cues, which is the same with the case for the experimental group. However, in the experimental group, the expert’s gaze path was highlighted by the markers, whereas in the third group, a gaze path that was significantly deviated from the expert’s path was chosen for gaze-path cueing (see Figure 4). Thus, we ended up with a 3-group design with a functional cue group (expert’s gaze path), a dysfunctional cue group (deviating gaze path), and a control group (simple verbal instruction). We expected participants of the cue groups to show the respective gaze path in a post- and retention test, whereas the control group was expected not to change gaze behavior but to constantly show a rather functional than dysfunctional path (Savelsbergh et al., 2010). Furthermore, by assuming that guiding the learners’ gaze to relevant cues promotes anticipatory-skill learning (Hagemann et al., 2006; see also Williams et al., 2002), it was expected to find increased learning for the functional group compared with the dysfunctional and control groups. In addition, based on the expectation that the control group rather would show the expert than the deviating gaze path, increased learning for the control when compared with the dysfunctional group should be found.


Perceptual Training in Beach Volleyball Defence: Different Effects of Gaze-Path Cueing on Gaze and Decision-Making.

Klostermann A, Vater C, Kredel R, Hossner EJ - Front Psychol (2015)

Functional (top) and dysfunctional (bottom) visual-cue paths at the first frame of phase P0 (set), P1 (run-up), P2 (attack), and the last frame of P2 (attack). In P0–P2 of the functional path, the ball, the attacker, and the anticipated ball-hand-contact are cued, respectively; in P0–P2 of the dysfunctional path, the ball is always cued. Original tapes were colored with red markers.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4664622&req=5

Figure 4: Functional (top) and dysfunctional (bottom) visual-cue paths at the first frame of phase P0 (set), P1 (run-up), P2 (attack), and the last frame of P2 (attack). In P0–P2 of the functional path, the ball, the attacker, and the anticipated ball-hand-contact are cued, respectively; in P0–P2 of the dysfunctional path, the ball is always cued. Original tapes were colored with red markers.
Mentions: In the experiment, as in former perceptual-learning studies, changes of an experimental cue group from pre- to post- and retention test regarding gaze behavior and decision-making needs to be compared with the respective values of a control group. In this respect, a conservative control group was preferred over a control group without any treatment. This means that the participants of the control group watched the same training videos, however, without visual cues, and they were, in addition, asked to identify crucial hints for anticipating the upcoming type of attack. Hence, this intervention can be considered as the fairest possible control as learning advantages of the experimental group would imply that gaze-path cueing actually pays off in comparison to a simple verbal instruction that promotes self-learning. Beyond this, we tried to experimentally disentangle the effect of gaze-path cueing from the learning of an optimal gaze path. For this reason, the design was completed by a third group whose participants were treated with gaze-path cues, which is the same with the case for the experimental group. However, in the experimental group, the expert’s gaze path was highlighted by the markers, whereas in the third group, a gaze path that was significantly deviated from the expert’s path was chosen for gaze-path cueing (see Figure 4). Thus, we ended up with a 3-group design with a functional cue group (expert’s gaze path), a dysfunctional cue group (deviating gaze path), and a control group (simple verbal instruction). We expected participants of the cue groups to show the respective gaze path in a post- and retention test, whereas the control group was expected not to change gaze behavior but to constantly show a rather functional than dysfunctional path (Savelsbergh et al., 2010). Furthermore, by assuming that guiding the learners’ gaze to relevant cues promotes anticipatory-skill learning (Hagemann et al., 2006; see also Williams et al., 2002), it was expected to find increased learning for the functional group compared with the dysfunctional and control groups. In addition, based on the expectation that the control group rather would show the expert than the deviating gaze path, increased learning for the control when compared with the dysfunctional group should be found.

Bottom Line: However, recent findings challenge this method, especially, with regards to its actual effects on gaze behavior.Gaze analyses revealed learning effects for the dysfunctional group only.Hence, the results confirm cueing effects on gaze behavior, but they also question its benefit for enhancing decision-making.

View Article: PubMed Central - PubMed

Affiliation: Institute of Sport Science, University of Bern Bern, Switzerland.

ABSTRACT
For perceptual-cognitive skill training, a variety of intervention methods has been proposed, including the so-called "color-cueing method" which aims on superior gaze-path learning by applying visual markers. However, recent findings challenge this method, especially, with regards to its actual effects on gaze behavior. Consequently, after a preparatory study on the identification of appropriate visual cues for life-size displays, a perceptual-training experiment on decision-making in beach volleyball was conducted, contrasting two cueing interventions (functional vs. dysfunctional gaze path) with a conservative control condition (anticipation-related instructions). Gaze analyses revealed learning effects for the dysfunctional group only. Regarding decision-making, all groups showed enhanced performance with largest improvements for the control group followed by the functional and the dysfunctional group. Hence, the results confirm cueing effects on gaze behavior, but they also question its benefit for enhancing decision-making. However, before completely denying the method's value, optimisations should be checked regarding, for instance, cueing-pattern characteristics and gaze-related feedback.

No MeSH data available.


Related in: MedlinePlus