Limits...
In planta Identification of Putative Pathogenicity Factors from the Chickpea Pathogen Ascochyta rabiei by De novo Transcriptome Sequencing Using RNA-Seq and Massive Analysis of cDNA Ends.

Fondevilla S, Krezdorn N, Rotter B, Kahl G, Winter P - Front Microbiol (2015)

Bottom Line: Since pathogenicity factors are usually secreted, we predicted the A. rabiei secretome, yielding 550 putatively secreted proteins.MACE identified 596 transcripts that were up-regulated during infection.An analysis of these genes identified a collection of candidate pathogenicity factors and unraveled the pathogen's strategy for infecting its host.

View Article: PubMed Central - PubMed

Affiliation: Plant Molecular Biology, Institute for Molecular Bioscience, Goethe-University of Frankfurt Frankfurt am Main, Germany.

ABSTRACT
The most important foliar diseases in legumes worldwide are ascochyta blights. Up to now, in the Ascochyta-legume pathosystem most studies focused on the identification of resistance genes in the host, while very little is known about the pathogenicity factors of the fungal pathogen. Moreover, available data were often obtained from fungi growing under artificial conditions. Therefore, in this study we aimed at the identification of the pathogenicity factors of Ascochyta rabiei, causing ascochyta blight in chickpea. To identify potential fungal pathogenicity factors, we employed RNA-seq and Massive Analysis of cDNA Ends (MACE) to produce comprehensive expression profiles of A. rabiei genes isolated either from the fungus growing in absence of its host or from fungi infecting chickpea leaves. We further provide a comprehensive de novo assembly of the A. rabiei transcriptome comprising 22,725 contigs with an average length of 1178 bp. Since pathogenicity factors are usually secreted, we predicted the A. rabiei secretome, yielding 550 putatively secreted proteins. MACE identified 596 transcripts that were up-regulated during infection. An analysis of these genes identified a collection of candidate pathogenicity factors and unraveled the pathogen's strategy for infecting its host.

No MeSH data available.


Related in: MedlinePlus

Twenty-two frequent Pfam protein families found in A. rabiei transcriptome. The number of proteins included in the respective family is indicated.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4664620&req=5

Figure 4: Twenty-two frequent Pfam protein families found in A. rabiei transcriptome. The number of proteins included in the respective family is indicated.

Mentions: We further identified conserved protein families/domains present in the A. rabiei transcriptome by searching against Pfam protein domain families. The top 22 more frequent families/domains are shown in Figure 4. The frequent families/domains in the A. rabiei transcriptome were related to transport and regulation of genes such as “Major facilitator superfamily,” “Protein kinase domain,” “Fungal specific transcription factor domain,” “Sugar (and other) transporter,” “WD domain; G-beta repeat,” “Fungal Zn(2)-Cys(6) binuclear cluster domain,” and “ABC transporter.” Other relevant domains were associated with toxin/secondary metabolism such as “Fungal thricothecene efflux pump TRI12” (eight proteins), that are involved in tricothecene toxin biosynthesis, “Polyketide synthase” (12 proteins), the “KR domain,” found in polyketide synthase toxin biosynthesis (eight proteins), and different kinds of “Beta-ketoacyl synthase,” many of which are also involved in the synthesis of polyketides (19 proteins). Many protein domains with putative roles in plant tissue degradation were also identified as e.g., different kinds of peptidases domains (79 proteins), “pectinesterases” (three proteins), “pectate lyase” (11 proteins), “lipases” (11 proteins), “Glycosyl hydrolases” (127 proteins), “cutinase” (five proteins) and “cellulase” (four proteins).


In planta Identification of Putative Pathogenicity Factors from the Chickpea Pathogen Ascochyta rabiei by De novo Transcriptome Sequencing Using RNA-Seq and Massive Analysis of cDNA Ends.

Fondevilla S, Krezdorn N, Rotter B, Kahl G, Winter P - Front Microbiol (2015)

Twenty-two frequent Pfam protein families found in A. rabiei transcriptome. The number of proteins included in the respective family is indicated.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4664620&req=5

Figure 4: Twenty-two frequent Pfam protein families found in A. rabiei transcriptome. The number of proteins included in the respective family is indicated.
Mentions: We further identified conserved protein families/domains present in the A. rabiei transcriptome by searching against Pfam protein domain families. The top 22 more frequent families/domains are shown in Figure 4. The frequent families/domains in the A. rabiei transcriptome were related to transport and regulation of genes such as “Major facilitator superfamily,” “Protein kinase domain,” “Fungal specific transcription factor domain,” “Sugar (and other) transporter,” “WD domain; G-beta repeat,” “Fungal Zn(2)-Cys(6) binuclear cluster domain,” and “ABC transporter.” Other relevant domains were associated with toxin/secondary metabolism such as “Fungal thricothecene efflux pump TRI12” (eight proteins), that are involved in tricothecene toxin biosynthesis, “Polyketide synthase” (12 proteins), the “KR domain,” found in polyketide synthase toxin biosynthesis (eight proteins), and different kinds of “Beta-ketoacyl synthase,” many of which are also involved in the synthesis of polyketides (19 proteins). Many protein domains with putative roles in plant tissue degradation were also identified as e.g., different kinds of peptidases domains (79 proteins), “pectinesterases” (three proteins), “pectate lyase” (11 proteins), “lipases” (11 proteins), “Glycosyl hydrolases” (127 proteins), “cutinase” (five proteins) and “cellulase” (four proteins).

Bottom Line: Since pathogenicity factors are usually secreted, we predicted the A. rabiei secretome, yielding 550 putatively secreted proteins.MACE identified 596 transcripts that were up-regulated during infection.An analysis of these genes identified a collection of candidate pathogenicity factors and unraveled the pathogen's strategy for infecting its host.

View Article: PubMed Central - PubMed

Affiliation: Plant Molecular Biology, Institute for Molecular Bioscience, Goethe-University of Frankfurt Frankfurt am Main, Germany.

ABSTRACT
The most important foliar diseases in legumes worldwide are ascochyta blights. Up to now, in the Ascochyta-legume pathosystem most studies focused on the identification of resistance genes in the host, while very little is known about the pathogenicity factors of the fungal pathogen. Moreover, available data were often obtained from fungi growing under artificial conditions. Therefore, in this study we aimed at the identification of the pathogenicity factors of Ascochyta rabiei, causing ascochyta blight in chickpea. To identify potential fungal pathogenicity factors, we employed RNA-seq and Massive Analysis of cDNA Ends (MACE) to produce comprehensive expression profiles of A. rabiei genes isolated either from the fungus growing in absence of its host or from fungi infecting chickpea leaves. We further provide a comprehensive de novo assembly of the A. rabiei transcriptome comprising 22,725 contigs with an average length of 1178 bp. Since pathogenicity factors are usually secreted, we predicted the A. rabiei secretome, yielding 550 putatively secreted proteins. MACE identified 596 transcripts that were up-regulated during infection. An analysis of these genes identified a collection of candidate pathogenicity factors and unraveled the pathogen's strategy for infecting its host.

No MeSH data available.


Related in: MedlinePlus