Limits...
Alternatives to Antibiotics to Prevent Necrotic Enteritis in Broiler Chickens: A Microbiologist's Perspective.

Caly DL, D'Inca R, Auclair E, Drider D - Front Microbiol (2015)

Bottom Line: Since the 2006 European ban on the use of antibiotics as growth promoters in animal feed, numerous studies have been published describing alternative strategies to prevent diseases in animals.A particular focus has been on prevention of necrotic enteritis in poultry caused by Clostridium perfringens by the use of microbes or microbe-derived products.Microbes produce a plethora of molecules with antimicrobial properties and they can also have beneficial effects through interactions with their host.

View Article: PubMed Central - PubMed

Affiliation: Université Lille, INRA, ISA, Université Artois, Université Littoral Côte d'Opale, Institut Charles Viollette Lille, France.

ABSTRACT
Since the 2006 European ban on the use of antibiotics as growth promoters in animal feed, numerous studies have been published describing alternative strategies to prevent diseases in animals. A particular focus has been on prevention of necrotic enteritis in poultry caused by Clostridium perfringens by the use of microbes or microbe-derived products. Microbes produce a plethora of molecules with antimicrobial properties and they can also have beneficial effects through interactions with their host. Here we review recent developments in novel preventive treatments against C. perfringens-induced necrotic enteritis in broiler chickens that employ yeasts, bacteria and bacteriophages or secondary metabolites and other microbial products in disease control.

No MeSH data available.


Related in: MedlinePlus

Identification of C. perfringens virulence and pathogenicity factors as potential targets for NE prevention. C. perfringens virulence and pathogenicity factors are represented as colored boxes. Antagonistic action of the microbes and microbe-derived products discussed in this review are represented by flat-end arrows.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4664614&req=5

Figure 1: Identification of C. perfringens virulence and pathogenicity factors as potential targets for NE prevention. C. perfringens virulence and pathogenicity factors are represented as colored boxes. Antagonistic action of the microbes and microbe-derived products discussed in this review are represented by flat-end arrows.

Mentions: The rapid death (within 24 h) of chickens with NE often prevents the treatment of the disease. Antibiotics have been commonly used worldwide as growth promoters and for prophylactic treatment of C. perfringens-induced NE in poultry. However, with the European ban on antibiotics (feed additives regulation 1831/2003/EC), which took effect in January 2006, alternatives to antibiotics became essential in order to prevent NE occurrence and the consequent economic losses for the poultry industry. Preventive treatments can take the form of actions on predisposing factors, such as coccidiosis prevention, diet modifications, or improving overall cleanliness and hygiene. Alternatively they can directly target the causal agent of the disease by controlling the proliferation, colonization and persistence of virulent strains of C. perfringens or interfering with virulence and pathogenicity factors (Figure 1). C. perfringens infections can be reduced or abolished by using natural feed additives, such as probiotics (yeasts or bacteria), plants (Engberg et al., 2012), molecules of plant origin [for example, essential oils (Mitsch et al., 2004; Timbermont et al., 2010) or Annatto extracts (Galindo-Cuspinera et al., 2003)], organic acids (Geier et al., 2010; Timbermont et al., 2010), enzymes (Jackson et al., 2003; Engberg et al., 2004), lysozyme (Liu et al., 2010), or molecules of microbial origin, such as yeast extract and antimicrobial peptides (Figure 1). Here we give an overview of these preventive treatments, by focusing on micro-organisms and molecules or products of microbial origins that affects C. perfringens growth and pathogenicity.


Alternatives to Antibiotics to Prevent Necrotic Enteritis in Broiler Chickens: A Microbiologist's Perspective.

Caly DL, D'Inca R, Auclair E, Drider D - Front Microbiol (2015)

Identification of C. perfringens virulence and pathogenicity factors as potential targets for NE prevention. C. perfringens virulence and pathogenicity factors are represented as colored boxes. Antagonistic action of the microbes and microbe-derived products discussed in this review are represented by flat-end arrows.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4664614&req=5

Figure 1: Identification of C. perfringens virulence and pathogenicity factors as potential targets for NE prevention. C. perfringens virulence and pathogenicity factors are represented as colored boxes. Antagonistic action of the microbes and microbe-derived products discussed in this review are represented by flat-end arrows.
Mentions: The rapid death (within 24 h) of chickens with NE often prevents the treatment of the disease. Antibiotics have been commonly used worldwide as growth promoters and for prophylactic treatment of C. perfringens-induced NE in poultry. However, with the European ban on antibiotics (feed additives regulation 1831/2003/EC), which took effect in January 2006, alternatives to antibiotics became essential in order to prevent NE occurrence and the consequent economic losses for the poultry industry. Preventive treatments can take the form of actions on predisposing factors, such as coccidiosis prevention, diet modifications, or improving overall cleanliness and hygiene. Alternatively they can directly target the causal agent of the disease by controlling the proliferation, colonization and persistence of virulent strains of C. perfringens or interfering with virulence and pathogenicity factors (Figure 1). C. perfringens infections can be reduced or abolished by using natural feed additives, such as probiotics (yeasts or bacteria), plants (Engberg et al., 2012), molecules of plant origin [for example, essential oils (Mitsch et al., 2004; Timbermont et al., 2010) or Annatto extracts (Galindo-Cuspinera et al., 2003)], organic acids (Geier et al., 2010; Timbermont et al., 2010), enzymes (Jackson et al., 2003; Engberg et al., 2004), lysozyme (Liu et al., 2010), or molecules of microbial origin, such as yeast extract and antimicrobial peptides (Figure 1). Here we give an overview of these preventive treatments, by focusing on micro-organisms and molecules or products of microbial origins that affects C. perfringens growth and pathogenicity.

Bottom Line: Since the 2006 European ban on the use of antibiotics as growth promoters in animal feed, numerous studies have been published describing alternative strategies to prevent diseases in animals.A particular focus has been on prevention of necrotic enteritis in poultry caused by Clostridium perfringens by the use of microbes or microbe-derived products.Microbes produce a plethora of molecules with antimicrobial properties and they can also have beneficial effects through interactions with their host.

View Article: PubMed Central - PubMed

Affiliation: Université Lille, INRA, ISA, Université Artois, Université Littoral Côte d'Opale, Institut Charles Viollette Lille, France.

ABSTRACT
Since the 2006 European ban on the use of antibiotics as growth promoters in animal feed, numerous studies have been published describing alternative strategies to prevent diseases in animals. A particular focus has been on prevention of necrotic enteritis in poultry caused by Clostridium perfringens by the use of microbes or microbe-derived products. Microbes produce a plethora of molecules with antimicrobial properties and they can also have beneficial effects through interactions with their host. Here we review recent developments in novel preventive treatments against C. perfringens-induced necrotic enteritis in broiler chickens that employ yeasts, bacteria and bacteriophages or secondary metabolites and other microbial products in disease control.

No MeSH data available.


Related in: MedlinePlus