Limits...
Treatment of a multiple sclerosis animal model by a novel nanodrop formulation of a natural antioxidant.

Binyamin O, Larush L, Frid K, Keller G, Friedman-Levi Y, Ovadia H, Abramsky O, Magdassi S, Gabizon R - Int J Nanomedicine (2015)

Bottom Line: Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system and is associated with demyelination, neurodegeneration, and sensitivity to oxidative stress.Pathological examinations revealed that Nano-PSO administration dramatically reduced demyelination and oxidation of lipids in the brains of the affected animals, which are hallmarks of this severe neurological disease.On the mechanistic side, our results demonstrate that lipid oxidation may be a seminal feature in both demyelination and neurodegeneration.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurology, The Agnes Ginges Center of Human Neurogenetics, Hadassah University Hospital, Jerusalem, Israel.

ABSTRACT
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system and is associated with demyelination, neurodegeneration, and sensitivity to oxidative stress. In this work, we administered a nanodroplet formulation of pomegranate seed oil (PSO), denominated Nano-PSO, to mice induced for experimental autoimmune encephalomyelitis (EAE), an established model of MS. PSO comprises high levels of punicic acid, a unique polyunsaturated fatty acid considered as one of the strongest natural antioxidants. We show here that while EAE-induced mice treated with natural PSO presented some reduction in disease burden, this beneficial effect increased significantly when EAE mice were treated with Nano-PSO of specific size nanodroplets at much lower concentrations of the oil. Pathological examinations revealed that Nano-PSO administration dramatically reduced demyelination and oxidation of lipids in the brains of the affected animals, which are hallmarks of this severe neurological disease. We propose that novel formulations of natural antioxidants such as Nano-PSO may be considered for the treatment of patients suffering from demyelinating diseases. On the mechanistic side, our results demonstrate that lipid oxidation may be a seminal feature in both demyelination and neurodegeneration.

No MeSH data available.


Related in: MedlinePlus

Individual α-EAE activity of Nano-PSO ingredients.Notes: Mice were induced for EAE and treated from day 1 of induction (by gavage) with the reagents described in the insert of the figure (n=7 for each of the groups). Nano-PSO was administrated at a dose of 2 μL PSO per 150 μL solution. Mice were scored daily for EAE signs for 2 additional weeks. P<0.05 for the results in the Nano-PSO group versus all others.Abbreviations: PSO, pomegranate seed oil; EAE, experimental autoimmune encephalomyelitis.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4664546&req=5

f3-ijn-10-7165: Individual α-EAE activity of Nano-PSO ingredients.Notes: Mice were induced for EAE and treated from day 1 of induction (by gavage) with the reagents described in the insert of the figure (n=7 for each of the groups). Nano-PSO was administrated at a dose of 2 μL PSO per 150 μL solution. Mice were scored daily for EAE signs for 2 additional weeks. P<0.05 for the results in the Nano-PSO group versus all others.Abbreviations: PSO, pomegranate seed oil; EAE, experimental autoimmune encephalomyelitis.

Mentions: As stated in the “Introduction” section, the main component of PSO is PA, a 18:3 polyunsaturated fatty acid. This is also the main or only compound that differentiates PSO from other vegetable oils,29 in particular soybean oil. To test whether PA is indeed the Nano-PSO component that exerts most of the α-EAE effect, EAE-induced mice were treated from the day of the induction with a comparable Nano-Soya formulation, as well as with a mixture of the emulsifying agents. Figure 3 shows that only Nano-PSO (2 μL PSO/d) exerted a beneficial clinical effect on the EAE-induced mice (P<0.05), while groups treated with Nano-Soya or the surfactants alone behave similarly in disease pattern and score to the untreated EAE mice.


Treatment of a multiple sclerosis animal model by a novel nanodrop formulation of a natural antioxidant.

Binyamin O, Larush L, Frid K, Keller G, Friedman-Levi Y, Ovadia H, Abramsky O, Magdassi S, Gabizon R - Int J Nanomedicine (2015)

Individual α-EAE activity of Nano-PSO ingredients.Notes: Mice were induced for EAE and treated from day 1 of induction (by gavage) with the reagents described in the insert of the figure (n=7 for each of the groups). Nano-PSO was administrated at a dose of 2 μL PSO per 150 μL solution. Mice were scored daily for EAE signs for 2 additional weeks. P<0.05 for the results in the Nano-PSO group versus all others.Abbreviations: PSO, pomegranate seed oil; EAE, experimental autoimmune encephalomyelitis.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4664546&req=5

f3-ijn-10-7165: Individual α-EAE activity of Nano-PSO ingredients.Notes: Mice were induced for EAE and treated from day 1 of induction (by gavage) with the reagents described in the insert of the figure (n=7 for each of the groups). Nano-PSO was administrated at a dose of 2 μL PSO per 150 μL solution. Mice were scored daily for EAE signs for 2 additional weeks. P<0.05 for the results in the Nano-PSO group versus all others.Abbreviations: PSO, pomegranate seed oil; EAE, experimental autoimmune encephalomyelitis.
Mentions: As stated in the “Introduction” section, the main component of PSO is PA, a 18:3 polyunsaturated fatty acid. This is also the main or only compound that differentiates PSO from other vegetable oils,29 in particular soybean oil. To test whether PA is indeed the Nano-PSO component that exerts most of the α-EAE effect, EAE-induced mice were treated from the day of the induction with a comparable Nano-Soya formulation, as well as with a mixture of the emulsifying agents. Figure 3 shows that only Nano-PSO (2 μL PSO/d) exerted a beneficial clinical effect on the EAE-induced mice (P<0.05), while groups treated with Nano-Soya or the surfactants alone behave similarly in disease pattern and score to the untreated EAE mice.

Bottom Line: Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system and is associated with demyelination, neurodegeneration, and sensitivity to oxidative stress.Pathological examinations revealed that Nano-PSO administration dramatically reduced demyelination and oxidation of lipids in the brains of the affected animals, which are hallmarks of this severe neurological disease.On the mechanistic side, our results demonstrate that lipid oxidation may be a seminal feature in both demyelination and neurodegeneration.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurology, The Agnes Ginges Center of Human Neurogenetics, Hadassah University Hospital, Jerusalem, Israel.

ABSTRACT
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system and is associated with demyelination, neurodegeneration, and sensitivity to oxidative stress. In this work, we administered a nanodroplet formulation of pomegranate seed oil (PSO), denominated Nano-PSO, to mice induced for experimental autoimmune encephalomyelitis (EAE), an established model of MS. PSO comprises high levels of punicic acid, a unique polyunsaturated fatty acid considered as one of the strongest natural antioxidants. We show here that while EAE-induced mice treated with natural PSO presented some reduction in disease burden, this beneficial effect increased significantly when EAE mice were treated with Nano-PSO of specific size nanodroplets at much lower concentrations of the oil. Pathological examinations revealed that Nano-PSO administration dramatically reduced demyelination and oxidation of lipids in the brains of the affected animals, which are hallmarks of this severe neurological disease. We propose that novel formulations of natural antioxidants such as Nano-PSO may be considered for the treatment of patients suffering from demyelinating diseases. On the mechanistic side, our results demonstrate that lipid oxidation may be a seminal feature in both demyelination and neurodegeneration.

No MeSH data available.


Related in: MedlinePlus