Limits...
Development of polymeric-cationic peptide composite nanoparticles, a nanoparticle-in-nanoparticle system for controlled gene delivery.

Jain AK, Massey A, Yusuf H, McDonald DM, McCarthy HO, Kett VL - Int J Nanomedicine (2015)

Bottom Line: The best formulation was selected and was able to transfect cells while maintaining viability.The effect of transferrin-appended composite nanoparticles was also studied.Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA.

View Article: PubMed Central - PubMed

Affiliation: School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK ; Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, UK.

ABSTRACT
We report the formulation of novel composite nanoparticles that combine the high transfection efficiency of cationic peptide-DNA nanoparticles with the biocompatibility and prolonged delivery of polylactic acid-polyethylene glycol (PLA-PEG). The cationic cell-penetrating peptide RALA was used to condense DNA into nanoparticles that were encapsulated within a range of PLA-PEG copolymers. The composite nanoparticles produced exhibited excellent physicochemical properties including size <200 nm and encapsulation efficiency >80%. Images of the composite nanoparticles obtained with a new transmission electron microscopy staining method revealed the peptide-DNA nanoparticles within the PLA-PEG matrix. Varying the copolymers modulated the DNA release rate >6 weeks in vitro. The best formulation was selected and was able to transfect cells while maintaining viability. The effect of transferrin-appended composite nanoparticles was also studied. Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA.

No MeSH data available.


In vitro transfection of ZR-75-1 cell lines with PLA25-PEG5 composite nanoparticles and transferrin-modified PLA25-PEG5 composite nanoparticles (Tf-composites).Notes: (A) Particle size and zeta potential characterization of RNPs, composite nanoparticles, and Tf-composite nanoparticles; (B) percent cell viability after treatment of the ZR-75-1 cells with nanoparticles; (C) transfection efficiency by flow cytometry and fluorescent microscopy: (i) DNA only; (ii) RNPs; (iii) composite nanoparticles; and (iv) Tf-composites. The top row depicts the bright field images, and the bottom row shows the same samples under fluorescence. Magnification was ×100. The numbers on the images indicate the percentage of cells expressing the GFP determined by flow cytometry.Abbreviations: PLA, polylactic acid; PEG, polyethylene glycol; RNPs, RALA nanoparticles; GFP, green fluorescent protein; PDI, polydispersity index.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4664533&req=5

f7-ijn-10-7183: In vitro transfection of ZR-75-1 cell lines with PLA25-PEG5 composite nanoparticles and transferrin-modified PLA25-PEG5 composite nanoparticles (Tf-composites).Notes: (A) Particle size and zeta potential characterization of RNPs, composite nanoparticles, and Tf-composite nanoparticles; (B) percent cell viability after treatment of the ZR-75-1 cells with nanoparticles; (C) transfection efficiency by flow cytometry and fluorescent microscopy: (i) DNA only; (ii) RNPs; (iii) composite nanoparticles; and (iv) Tf-composites. The top row depicts the bright field images, and the bottom row shows the same samples under fluorescence. Magnification was ×100. The numbers on the images indicate the percentage of cells expressing the GFP determined by flow cytometry.Abbreviations: PLA, polylactic acid; PEG, polyethylene glycol; RNPs, RALA nanoparticles; GFP, green fluorescent protein; PDI, polydispersity index.

Mentions: In vitro transfection studies were performed to evaluate the transfection efficiency of composite nanoparticles manufactured with PLA25-PEG5. Transferrin-appended PLA25-PEG5 composite nanoparticles were also studied as previous reports have shown that transferrin-adsorbed nanoparticles can exhibit enhance cellular uptake with good stability in vivo.31 Transfection was compared with un-encapsulated RNPs. Figure 7A shows the particle size and zeta potential data obtained for the nanoparticles used in the study and indicate that transferrin adsorption caused a large increase in zeta potential, confirming the adsorption of the transferrin on the surface of composite nanoparticles. In the current study, transferrin-adsorbed nanoparticles were collected by high-speed centrifugation and vigorous vortexing; the presence of transferrin on the surface of the nanoparticles even after these shear forces indicates their physical stability of the system.


Development of polymeric-cationic peptide composite nanoparticles, a nanoparticle-in-nanoparticle system for controlled gene delivery.

Jain AK, Massey A, Yusuf H, McDonald DM, McCarthy HO, Kett VL - Int J Nanomedicine (2015)

In vitro transfection of ZR-75-1 cell lines with PLA25-PEG5 composite nanoparticles and transferrin-modified PLA25-PEG5 composite nanoparticles (Tf-composites).Notes: (A) Particle size and zeta potential characterization of RNPs, composite nanoparticles, and Tf-composite nanoparticles; (B) percent cell viability after treatment of the ZR-75-1 cells with nanoparticles; (C) transfection efficiency by flow cytometry and fluorescent microscopy: (i) DNA only; (ii) RNPs; (iii) composite nanoparticles; and (iv) Tf-composites. The top row depicts the bright field images, and the bottom row shows the same samples under fluorescence. Magnification was ×100. The numbers on the images indicate the percentage of cells expressing the GFP determined by flow cytometry.Abbreviations: PLA, polylactic acid; PEG, polyethylene glycol; RNPs, RALA nanoparticles; GFP, green fluorescent protein; PDI, polydispersity index.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4664533&req=5

f7-ijn-10-7183: In vitro transfection of ZR-75-1 cell lines with PLA25-PEG5 composite nanoparticles and transferrin-modified PLA25-PEG5 composite nanoparticles (Tf-composites).Notes: (A) Particle size and zeta potential characterization of RNPs, composite nanoparticles, and Tf-composite nanoparticles; (B) percent cell viability after treatment of the ZR-75-1 cells with nanoparticles; (C) transfection efficiency by flow cytometry and fluorescent microscopy: (i) DNA only; (ii) RNPs; (iii) composite nanoparticles; and (iv) Tf-composites. The top row depicts the bright field images, and the bottom row shows the same samples under fluorescence. Magnification was ×100. The numbers on the images indicate the percentage of cells expressing the GFP determined by flow cytometry.Abbreviations: PLA, polylactic acid; PEG, polyethylene glycol; RNPs, RALA nanoparticles; GFP, green fluorescent protein; PDI, polydispersity index.
Mentions: In vitro transfection studies were performed to evaluate the transfection efficiency of composite nanoparticles manufactured with PLA25-PEG5. Transferrin-appended PLA25-PEG5 composite nanoparticles were also studied as previous reports have shown that transferrin-adsorbed nanoparticles can exhibit enhance cellular uptake with good stability in vivo.31 Transfection was compared with un-encapsulated RNPs. Figure 7A shows the particle size and zeta potential data obtained for the nanoparticles used in the study and indicate that transferrin adsorption caused a large increase in zeta potential, confirming the adsorption of the transferrin on the surface of composite nanoparticles. In the current study, transferrin-adsorbed nanoparticles were collected by high-speed centrifugation and vigorous vortexing; the presence of transferrin on the surface of the nanoparticles even after these shear forces indicates their physical stability of the system.

Bottom Line: The best formulation was selected and was able to transfect cells while maintaining viability.The effect of transferrin-appended composite nanoparticles was also studied.Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA.

View Article: PubMed Central - PubMed

Affiliation: School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK ; Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, UK.

ABSTRACT
We report the formulation of novel composite nanoparticles that combine the high transfection efficiency of cationic peptide-DNA nanoparticles with the biocompatibility and prolonged delivery of polylactic acid-polyethylene glycol (PLA-PEG). The cationic cell-penetrating peptide RALA was used to condense DNA into nanoparticles that were encapsulated within a range of PLA-PEG copolymers. The composite nanoparticles produced exhibited excellent physicochemical properties including size <200 nm and encapsulation efficiency >80%. Images of the composite nanoparticles obtained with a new transmission electron microscopy staining method revealed the peptide-DNA nanoparticles within the PLA-PEG matrix. Varying the copolymers modulated the DNA release rate >6 weeks in vitro. The best formulation was selected and was able to transfect cells while maintaining viability. The effect of transferrin-appended composite nanoparticles was also studied. Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA.

No MeSH data available.