Limits...
Development of polymeric-cationic peptide composite nanoparticles, a nanoparticle-in-nanoparticle system for controlled gene delivery.

Jain AK, Massey A, Yusuf H, McDonald DM, McCarthy HO, Kett VL - Int J Nanomedicine (2015)

Bottom Line: The best formulation was selected and was able to transfect cells while maintaining viability.The effect of transferrin-appended composite nanoparticles was also studied.Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA.

View Article: PubMed Central - PubMed

Affiliation: School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK ; Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, UK.

ABSTRACT
We report the formulation of novel composite nanoparticles that combine the high transfection efficiency of cationic peptide-DNA nanoparticles with the biocompatibility and prolonged delivery of polylactic acid-polyethylene glycol (PLA-PEG). The cationic cell-penetrating peptide RALA was used to condense DNA into nanoparticles that were encapsulated within a range of PLA-PEG copolymers. The composite nanoparticles produced exhibited excellent physicochemical properties including size <200 nm and encapsulation efficiency >80%. Images of the composite nanoparticles obtained with a new transmission electron microscopy staining method revealed the peptide-DNA nanoparticles within the PLA-PEG matrix. Varying the copolymers modulated the DNA release rate >6 weeks in vitro. The best formulation was selected and was able to transfect cells while maintaining viability. The effect of transferrin-appended composite nanoparticles was also studied. Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA.

No MeSH data available.


Gel retardation assay performed to evaluate the effect of dichloromethane and sonication on the stability of the RNPs.Notes: (A) pDNA and RNPs were probe sonicated at 40%, 50%, and 60% amplitude for 30, 60, and 120 seconds; (B) DNA and RNPs vortexed with dichloromethane for 5, 15, 30, and 60 minutes. (C) RNPs processed through double emulsification process. The secondary emulsion was sampled after 1 and 2 minutes of sonication. Same samples were loaded with or without disruption with proteinase K after the sonication treatment.Abbreviations: L, 1 kb plus DNA ladder; D, DNA only; pDNA, plasmid DNA; RNPs, cationic RALA nanoparticles.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4664533&req=5

f4-ijn-10-7183: Gel retardation assay performed to evaluate the effect of dichloromethane and sonication on the stability of the RNPs.Notes: (A) pDNA and RNPs were probe sonicated at 40%, 50%, and 60% amplitude for 30, 60, and 120 seconds; (B) DNA and RNPs vortexed with dichloromethane for 5, 15, 30, and 60 minutes. (C) RNPs processed through double emulsification process. The secondary emulsion was sampled after 1 and 2 minutes of sonication. Same samples were loaded with or without disruption with proteinase K after the sonication treatment.Abbreviations: L, 1 kb plus DNA ladder; D, DNA only; pDNA, plasmid DNA; RNPs, cationic RALA nanoparticles.

Mentions: Figure 4 shows representative images of the three different kinds of experiments performed to assess stability of the RNPs and the pDNA condensed in it during the formulation of composite nanoparticles by double emulsion solvent evaporation method.


Development of polymeric-cationic peptide composite nanoparticles, a nanoparticle-in-nanoparticle system for controlled gene delivery.

Jain AK, Massey A, Yusuf H, McDonald DM, McCarthy HO, Kett VL - Int J Nanomedicine (2015)

Gel retardation assay performed to evaluate the effect of dichloromethane and sonication on the stability of the RNPs.Notes: (A) pDNA and RNPs were probe sonicated at 40%, 50%, and 60% amplitude for 30, 60, and 120 seconds; (B) DNA and RNPs vortexed with dichloromethane for 5, 15, 30, and 60 minutes. (C) RNPs processed through double emulsification process. The secondary emulsion was sampled after 1 and 2 minutes of sonication. Same samples were loaded with or without disruption with proteinase K after the sonication treatment.Abbreviations: L, 1 kb plus DNA ladder; D, DNA only; pDNA, plasmid DNA; RNPs, cationic RALA nanoparticles.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4664533&req=5

f4-ijn-10-7183: Gel retardation assay performed to evaluate the effect of dichloromethane and sonication on the stability of the RNPs.Notes: (A) pDNA and RNPs were probe sonicated at 40%, 50%, and 60% amplitude for 30, 60, and 120 seconds; (B) DNA and RNPs vortexed with dichloromethane for 5, 15, 30, and 60 minutes. (C) RNPs processed through double emulsification process. The secondary emulsion was sampled after 1 and 2 minutes of sonication. Same samples were loaded with or without disruption with proteinase K after the sonication treatment.Abbreviations: L, 1 kb plus DNA ladder; D, DNA only; pDNA, plasmid DNA; RNPs, cationic RALA nanoparticles.
Mentions: Figure 4 shows representative images of the three different kinds of experiments performed to assess stability of the RNPs and the pDNA condensed in it during the formulation of composite nanoparticles by double emulsion solvent evaporation method.

Bottom Line: The best formulation was selected and was able to transfect cells while maintaining viability.The effect of transferrin-appended composite nanoparticles was also studied.Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA.

View Article: PubMed Central - PubMed

Affiliation: School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK ; Weatherall Institute of Molecular Medicine, MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, UK.

ABSTRACT
We report the formulation of novel composite nanoparticles that combine the high transfection efficiency of cationic peptide-DNA nanoparticles with the biocompatibility and prolonged delivery of polylactic acid-polyethylene glycol (PLA-PEG). The cationic cell-penetrating peptide RALA was used to condense DNA into nanoparticles that were encapsulated within a range of PLA-PEG copolymers. The composite nanoparticles produced exhibited excellent physicochemical properties including size <200 nm and encapsulation efficiency >80%. Images of the composite nanoparticles obtained with a new transmission electron microscopy staining method revealed the peptide-DNA nanoparticles within the PLA-PEG matrix. Varying the copolymers modulated the DNA release rate >6 weeks in vitro. The best formulation was selected and was able to transfect cells while maintaining viability. The effect of transferrin-appended composite nanoparticles was also studied. Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA.

No MeSH data available.