Limits...
A Novel bHLH Transcription Factor Involved in Regulating Anthocyanin Biosynthesis in Chrysanthemums (Chrysanthemum morifolium Ramat.).

Xiang LL, Liu XF, Li X, Yin XR, Grierson D, Li F, Chen KS - PLoS ONE (2015)

Bottom Line: CmbHLH2 significantly upregulated the CmDFR promoter and triggered anthocyanin accumulation when co-expressed with CmMYB6.Yeast one-hybrid analyses indicated that CmbHLH2 was able to bind directly to the CmDFR promoter.These results suggest that CmbHLH2 is the essential partner for CmMYB6 in regulating anthocyanin biosynthesis in chrysanthemum.

View Article: PubMed Central - PubMed

Affiliation: College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China.

ABSTRACT
Chrysanthemums (Chrysanthemum morifolium Ramat.) exhibit a variety of flower colors due to their differing abilities to accumulate anthocyanins. One MYB member, CmMYB6, has been verified as a transcription regulator of chrysanthemum genes involved in anthocyanin biosynthesis; however, the co-regulators for CmMYB6 remain unclear in chrysanthemum. Here, the expression pattern of CmbHLH2, which is clustered in the IIIf bHLH subgroup, was shown to be positively correlated with the anthocyanin content of cultivars with red, pink and yellow flower colors, respectively. CmbHLH2 significantly upregulated the CmDFR promoter and triggered anthocyanin accumulation when co-expressed with CmMYB6. Yeast one-hybrid analyses indicated that CmbHLH2 was able to bind directly to the CmDFR promoter. Moreover, yeast two-hybrid assays indicated protein-protein interaction between CmbHLH2 and CmMYB6. These results suggest that CmbHLH2 is the essential partner for CmMYB6 in regulating anthocyanin biosynthesis in chrysanthemum.

Show MeSH
The anthocyanin contents of flowers of three different chrysanthemum cultivars.(a) The photographs of three chrysanthemum cultivars, named ‘Z1’, ‘Z2’ and ‘Z3’, respectively, where the bar represents 1 cm. (b) Anthocyanin contents in flower petals from Z1, Z2 and Z3. The vertical bars represent S.E. of three biological replicates.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4664390&req=5

pone.0143892.g002: The anthocyanin contents of flowers of three different chrysanthemum cultivars.(a) The photographs of three chrysanthemum cultivars, named ‘Z1’, ‘Z2’ and ‘Z3’, respectively, where the bar represents 1 cm. (b) Anthocyanin contents in flower petals from Z1, Z2 and Z3. The vertical bars represent S.E. of three biological replicates.

Mentions: Three chrysanthemum cultivars used in this study had different flower colors (Fig 2A). Further measurement indicated that anthocyanin contents varied among them. ‘Z1’, with deep red ray florets, accumulated 2.83 mg/gFW anthocyanin compared with 0.08 mg/gFW in ‘Z2’ which had pink flower colors (Fig 2B). No anthocyanin was detected in ‘Z3’, which had yellow flowers (Fig 2B). This suggested that difference in anthocyanin contents was the main reason for the different colors of ray florets of these three chrysanthemum flower cultivars.


A Novel bHLH Transcription Factor Involved in Regulating Anthocyanin Biosynthesis in Chrysanthemums (Chrysanthemum morifolium Ramat.).

Xiang LL, Liu XF, Li X, Yin XR, Grierson D, Li F, Chen KS - PLoS ONE (2015)

The anthocyanin contents of flowers of three different chrysanthemum cultivars.(a) The photographs of three chrysanthemum cultivars, named ‘Z1’, ‘Z2’ and ‘Z3’, respectively, where the bar represents 1 cm. (b) Anthocyanin contents in flower petals from Z1, Z2 and Z3. The vertical bars represent S.E. of three biological replicates.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4664390&req=5

pone.0143892.g002: The anthocyanin contents of flowers of three different chrysanthemum cultivars.(a) The photographs of three chrysanthemum cultivars, named ‘Z1’, ‘Z2’ and ‘Z3’, respectively, where the bar represents 1 cm. (b) Anthocyanin contents in flower petals from Z1, Z2 and Z3. The vertical bars represent S.E. of three biological replicates.
Mentions: Three chrysanthemum cultivars used in this study had different flower colors (Fig 2A). Further measurement indicated that anthocyanin contents varied among them. ‘Z1’, with deep red ray florets, accumulated 2.83 mg/gFW anthocyanin compared with 0.08 mg/gFW in ‘Z2’ which had pink flower colors (Fig 2B). No anthocyanin was detected in ‘Z3’, which had yellow flowers (Fig 2B). This suggested that difference in anthocyanin contents was the main reason for the different colors of ray florets of these three chrysanthemum flower cultivars.

Bottom Line: CmbHLH2 significantly upregulated the CmDFR promoter and triggered anthocyanin accumulation when co-expressed with CmMYB6.Yeast one-hybrid analyses indicated that CmbHLH2 was able to bind directly to the CmDFR promoter.These results suggest that CmbHLH2 is the essential partner for CmMYB6 in regulating anthocyanin biosynthesis in chrysanthemum.

View Article: PubMed Central - PubMed

Affiliation: College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, PR China.

ABSTRACT
Chrysanthemums (Chrysanthemum morifolium Ramat.) exhibit a variety of flower colors due to their differing abilities to accumulate anthocyanins. One MYB member, CmMYB6, has been verified as a transcription regulator of chrysanthemum genes involved in anthocyanin biosynthesis; however, the co-regulators for CmMYB6 remain unclear in chrysanthemum. Here, the expression pattern of CmbHLH2, which is clustered in the IIIf bHLH subgroup, was shown to be positively correlated with the anthocyanin content of cultivars with red, pink and yellow flower colors, respectively. CmbHLH2 significantly upregulated the CmDFR promoter and triggered anthocyanin accumulation when co-expressed with CmMYB6. Yeast one-hybrid analyses indicated that CmbHLH2 was able to bind directly to the CmDFR promoter. Moreover, yeast two-hybrid assays indicated protein-protein interaction between CmbHLH2 and CmMYB6. These results suggest that CmbHLH2 is the essential partner for CmMYB6 in regulating anthocyanin biosynthesis in chrysanthemum.

Show MeSH