Limits...
Relative Pigment Composition and Remote Sensing Reflectance of Caribbean Shallow-Water Corals.

Torres-Pérez JL, Guild LS, Armstrong RA, Corredor J, Zuluaga-Montero A, Polanco R - PLoS ONE (2015)

Bottom Line: We found a total of 27 different pigments among the coral species, including some alteration products of the main pigments.Additionally, pigments typically found in endolithic algae were also identified.Depending on the coral species, the Rrs and the total symbiont pigment concentration per coral tissue area correlation showed 79.5-98.5% confidence levels demonstrating its use as a non-invasive robust technique to estimate pigment concentration in studies of coral reef biodiversity and health.

View Article: PubMed Central - PubMed

Affiliation: Bay Area Environmental Research Institute/NASA Ames Research Center, MS 245-4, Bldg 245, Rm. 120, Moffett Field, CA, 94035, United States of America.

ABSTRACT
Reef corals typically contain a number of pigments, mostly due to their symbiotic relationship with photosynthetic dinoflagellates. These pigments usually vary in presence and concentration and influence the spectral characteristics of corals. We studied the variations in pigment composition among seven Caribbean shallow-water Scleractinian corals by means of High Performance Liquid Chromatography (HPLC) analysis to further resolve the discrimination of corals. We found a total of 27 different pigments among the coral species, including some alteration products of the main pigments. Additionally, pigments typically found in endolithic algae were also identified. A Principal Components Analysis and a Hierarchical Cluster Analysis showed the separation of coral species based on pigment composition. All the corals were collected under the same physical environmental conditions. This suggests that pigment in the coral's symbionts might be more genetically-determined than influenced by prevailing physical conditions of the reef. We further investigated the use of remote sensing reflectance (Rrs) as a tool for estimating the total pigment concentration of reef corals. Depending on the coral species, the Rrs and the total symbiont pigment concentration per coral tissue area correlation showed 79.5-98.5% confidence levels demonstrating its use as a non-invasive robust technique to estimate pigment concentration in studies of coral reef biodiversity and health.

Show MeSH

Related in: MedlinePlus

Remote sensing reflectance for all seven species.The blue line represents the average Rrs with ±1SD shown as the black shadow. n = 5 for each species.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4664284&req=5

pone.0143709.g005: Remote sensing reflectance for all seven species.The blue line represents the average Rrs with ±1SD shown as the black shadow. n = 5 for each species.

Mentions: While there were differences in magnitude, all coral species showed the typical reflectance peaks around 572, 604 and 644 nm (Fig 5). Nonetheless, a Chi-square test showed a statistically significant difference among the Rrs curves of all seven coral species (χ2 = 23224, p<0.0001). Our past study showed correlations of some of the reflectance peaks (after a derivative analysis) with the presence of certain pigments [8]. Whether the Rrs is more influences by symbionts or pigment concentration seems to be species-specific. This is evidenced, for instance, in our C. natans and P. astreoides samples as whereas both showed the highest Rrs within the visible range (Fig 5), they differ significantly in symbiont and chlorophylls concentration. Contrarily, while P. furcata and P. strigosa contain similar symbiont and chlorophylls concentration, the Rrs of P. furcata is significantly lower than that of P. strigosa. This may be the result of a combination of different factors. First, the differences in skeletal density and structure mentioned above affects the distribution of symbionts and their respective pigment. Additionally, colony form (branched vs. massive) may lead to an internal “package effect” (overlap among the optical cross-sections of pigments within cells and mutual shading) [52], which affects the internal light regime reaching the symbionts and, hence, the absorption of photons. Such might be the case of P. furcata and C. natans as these showed the lowest correlations between the Rrs area and pigment concentration.


Relative Pigment Composition and Remote Sensing Reflectance of Caribbean Shallow-Water Corals.

Torres-Pérez JL, Guild LS, Armstrong RA, Corredor J, Zuluaga-Montero A, Polanco R - PLoS ONE (2015)

Remote sensing reflectance for all seven species.The blue line represents the average Rrs with ±1SD shown as the black shadow. n = 5 for each species.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4664284&req=5

pone.0143709.g005: Remote sensing reflectance for all seven species.The blue line represents the average Rrs with ±1SD shown as the black shadow. n = 5 for each species.
Mentions: While there were differences in magnitude, all coral species showed the typical reflectance peaks around 572, 604 and 644 nm (Fig 5). Nonetheless, a Chi-square test showed a statistically significant difference among the Rrs curves of all seven coral species (χ2 = 23224, p<0.0001). Our past study showed correlations of some of the reflectance peaks (after a derivative analysis) with the presence of certain pigments [8]. Whether the Rrs is more influences by symbionts or pigment concentration seems to be species-specific. This is evidenced, for instance, in our C. natans and P. astreoides samples as whereas both showed the highest Rrs within the visible range (Fig 5), they differ significantly in symbiont and chlorophylls concentration. Contrarily, while P. furcata and P. strigosa contain similar symbiont and chlorophylls concentration, the Rrs of P. furcata is significantly lower than that of P. strigosa. This may be the result of a combination of different factors. First, the differences in skeletal density and structure mentioned above affects the distribution of symbionts and their respective pigment. Additionally, colony form (branched vs. massive) may lead to an internal “package effect” (overlap among the optical cross-sections of pigments within cells and mutual shading) [52], which affects the internal light regime reaching the symbionts and, hence, the absorption of photons. Such might be the case of P. furcata and C. natans as these showed the lowest correlations between the Rrs area and pigment concentration.

Bottom Line: We found a total of 27 different pigments among the coral species, including some alteration products of the main pigments.Additionally, pigments typically found in endolithic algae were also identified.Depending on the coral species, the Rrs and the total symbiont pigment concentration per coral tissue area correlation showed 79.5-98.5% confidence levels demonstrating its use as a non-invasive robust technique to estimate pigment concentration in studies of coral reef biodiversity and health.

View Article: PubMed Central - PubMed

Affiliation: Bay Area Environmental Research Institute/NASA Ames Research Center, MS 245-4, Bldg 245, Rm. 120, Moffett Field, CA, 94035, United States of America.

ABSTRACT
Reef corals typically contain a number of pigments, mostly due to their symbiotic relationship with photosynthetic dinoflagellates. These pigments usually vary in presence and concentration and influence the spectral characteristics of corals. We studied the variations in pigment composition among seven Caribbean shallow-water Scleractinian corals by means of High Performance Liquid Chromatography (HPLC) analysis to further resolve the discrimination of corals. We found a total of 27 different pigments among the coral species, including some alteration products of the main pigments. Additionally, pigments typically found in endolithic algae were also identified. A Principal Components Analysis and a Hierarchical Cluster Analysis showed the separation of coral species based on pigment composition. All the corals were collected under the same physical environmental conditions. This suggests that pigment in the coral's symbionts might be more genetically-determined than influenced by prevailing physical conditions of the reef. We further investigated the use of remote sensing reflectance (Rrs) as a tool for estimating the total pigment concentration of reef corals. Depending on the coral species, the Rrs and the total symbiont pigment concentration per coral tissue area correlation showed 79.5-98.5% confidence levels demonstrating its use as a non-invasive robust technique to estimate pigment concentration in studies of coral reef biodiversity and health.

Show MeSH
Related in: MedlinePlus