Limits...
Distinct Upstream Role of Type I IFN Signaling in Hematopoietic Stem Cell-Derived and Epithelial Resident Cells for Concerted Recruitment of Ly-6Chi Monocytes and NK Cells via CCL2-CCL3 Cascade.

Uyangaa E, Kim JH, Patil AM, Choi JY, Kim SB, Eo SK - PLoS Pathog. (2015)

Bottom Line: However, the crucial regulators and cell populations that are affected by IFN-I to establish the early environment of innate cells in HSV-infected mucosal tissues are largely unknown.Also, IFN-I signaling in HSC-derived leukocytes appeared to suppress Ly-6Ghi neutrophil recruitment to ameliorate immunopathology.Therefore, this cascade response of resident-to-hematopoietic-to-resident cells that drives cytokine-to-chemokine-to-cytokine production to recruit orchestrated innate cells is critical for attenuation of HSV replication in inflamed tissues.

View Article: PubMed Central - PubMed

Affiliation: College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, Republic of Korea.

ABSTRACT
Type I interferon (IFN-I)-dependent orchestrated mobilization of innate cells in inflamed tissues is believed to play a critical role in controlling replication and CNS-invasion of herpes simplex virus (HSV). However, the crucial regulators and cell populations that are affected by IFN-I to establish the early environment of innate cells in HSV-infected mucosal tissues are largely unknown. Here, we found that IFN-I signaling promoted the differentiation of CCL2-producing Ly-6Chi monocytes and IFN-γ/granzyme B-producing NK cells, whereas deficiency of IFN-I signaling induced Ly-6Clo monocytes producing CXCL1 and CXCL2. More interestingly, recruitment of Ly-6Chi monocytes preceded that of NK cells with the levels peaked at 24 h post-infection in IFN-I-dependent manner, which was kinetically associated with the CCL2-CCL3 cascade response. Early Ly-6Chi monocyte recruitment was governed by CCL2 produced from hematopoietic stem cell (HSC)-derived leukocytes, whereas NK cell recruitment predominantly depended on CC chemokines produced by resident epithelial cells. Also, IFN-I signaling in HSC-derived leukocytes appeared to suppress Ly-6Ghi neutrophil recruitment to ameliorate immunopathology. Finally, tissue resident CD11bhiF4/80hi macrophages and CD11chiEpCAM+ dendritic cells appeared to produce initial CCL2 for migration-based self-amplification of early infiltrated Ly-6Chi monocytes upon stimulation by IFN-I produced from infected epithelial cells. Ultimately, these results decipher a detailed IFN-I-dependent pathway that establishes orchestrated mobilization of Ly-6Chi monocytes and NK cells through CCL2-CCL3 cascade response of HSC-derived leukocytes and epithelium-resident cells. Therefore, this cascade response of resident-to-hematopoietic-to-resident cells that drives cytokine-to-chemokine-to-cytokine production to recruit orchestrated innate cells is critical for attenuation of HSV replication in inflamed tissues.

Show MeSH

Related in: MedlinePlus

IFN-I signaling is essential to induce the rapid and concerted recruitment of Ly-6Chi monocytes and CD11c+ DCs in mucosal and draining LN tissues.(A) Leukocyte infiltration of vaginal tract and iliac LN in infected BL/6 or IFNAR KO mice. (B,C) Accumulated number of infiltrated leukocyte subsets. Cells were prepared from vaginal tract (B; VT) and iliac LN (C; ILN) by collagenase digestion at 12, 24, 48, and 72 h pi and subcellular proportions of CD11b+Ly-6Chi and CD11b+Ly-6Ghi leukocytes were determined using flow cytometric analysis. Values in the representative dot-plots denote the average percentages of each population derived from at least four independent samples after gating on CD11b+ cells. Data in the bar chart represent the average ± SD of values derived from three individual experiments (n = 4–5). *, p<0.05; **, p<0.01; ***, p<0.001 compared with the levels of BL/6 or IFNAR KO mice at the indicated time point.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4664252&req=5

ppat.1005256.g001: IFN-I signaling is essential to induce the rapid and concerted recruitment of Ly-6Chi monocytes and CD11c+ DCs in mucosal and draining LN tissues.(A) Leukocyte infiltration of vaginal tract and iliac LN in infected BL/6 or IFNAR KO mice. (B,C) Accumulated number of infiltrated leukocyte subsets. Cells were prepared from vaginal tract (B; VT) and iliac LN (C; ILN) by collagenase digestion at 12, 24, 48, and 72 h pi and subcellular proportions of CD11b+Ly-6Chi and CD11b+Ly-6Ghi leukocytes were determined using flow cytometric analysis. Values in the representative dot-plots denote the average percentages of each population derived from at least four independent samples after gating on CD11b+ cells. Data in the bar chart represent the average ± SD of values derived from three individual experiments (n = 4–5). *, p<0.05; **, p<0.01; ***, p<0.001 compared with the levels of BL/6 or IFNAR KO mice at the indicated time point.

Mentions: However, the crucial regulatory factors that establish the early orchestrated environment of infiltrated leukocytes in mucosal tissues and their cellular source have been not defined in depth. CD11b+Ly-6Chi monocytes play a pivotal role in exerting direct antimicrobial activity or further differentiate into inflammatory DCs, which participate in innate and adaptive protective immunity [24,25]. In addition, since our preliminary data showed that expression of the chemokine CCL2, a major factor in monocyte recruitment, was early and markedly enhanced in the vaginal tract of WT BL/6 mice upon mucosal HSV-1 infection (S2 Fig), we performed kinetic examinations of recruited myeloid-derived leukocyte subpopulations in the vaginal tract and its draining LN (iliac LN) 12, 24, 48, and 72 h after infection. IFN-I signal was found to be critical for recruitment of CD11b+Ly-6Chi monocytes in vaginal tract and iliac LN during the early phase of HSV-1 mucosal infection (Fig 1A). Notably, WT BL/6 mice showed early infiltration of CD11b+Ly-6Chi monocytes with a 10- to 20-fold increase in the vaginal tract and iliac LN at 24 h after infection, compared to IFNAR KO mice. In contrast, IFNAR KO mice contained a greater number of accumulated CD11b+Ly-6Ghi granulocytes in the vaginal tract with levels peaking at 48 h pi, and the number of iliac CD11b+Ly-6Ghi granulocytes increased up to 72 h pi. These results indicate that maximal infiltration of CD11b+Ly-6Chi monocytes in the vaginal tract of BL/6 mice is established at around 24 h after infection, whereas the infiltration of CD11b+Ly-6Ghi granulocytes in IFNAR KO mice peaked at 48 h pi. When total accumulated subpopulations of myeloid-derived leukocytes and DCs were examined during the early phase after HSV-1 infection (12, 24, 48, and 72 h pi), maximum accumulation of CD11b+Ly-6Chi monocytes was detected in the vaginal tract of BL/6 mice with 4- to 5-fold increased levels at 24 h pi, despite a moderately increased number of total CD11b+ myeloid-derived cells in IFNAR KO mice (Fig 1B). In contrast, the total number of CD11+ DCs and its myeloid DC subpopulation (CD11b+CD11c+) was increased in the vaginal tract of BL/6 mice, with a delayed peak at 48 h pi compared to IFNAR KO mice. Likewise, iliac LN of BL/6 mice also showed early increased levels of total CD11b+Ly-6Chi monocytes with saturated levels at 24 h pi, and levels of CD11c+ DCs, the myeloid DC subset (CD11c+CD11b+) and other DC subsets (CD11b−CD11c+) peaked at around 48 h pi, whereas in IFNAR KO mice CD11b+Ly-6Ghi granulocytes showed gradually increasing levels up to 72 h pi (Fig 1C). To summarize, interestingly, these results indicate that infiltration of CD11b+Ly-6Chi monocytes (levels of which peaked at 24 h pi) precede that of CD11c+DCs (levels of which peaked at 48 h) in mucosal tissues upon HSV-1 infection. Therefore, these results suggest that IFN-I signaling plays a crucial role in establishing early infiltration of CD11b+Ly-6Chi monocytes and CD11c+ DCs in the submucosa area of the vaginal tract with a concerted pattern of recruitment, which could subsequently provide a well-controlled inflammatory reaction and adaptive protective immunity.


Distinct Upstream Role of Type I IFN Signaling in Hematopoietic Stem Cell-Derived and Epithelial Resident Cells for Concerted Recruitment of Ly-6Chi Monocytes and NK Cells via CCL2-CCL3 Cascade.

Uyangaa E, Kim JH, Patil AM, Choi JY, Kim SB, Eo SK - PLoS Pathog. (2015)

IFN-I signaling is essential to induce the rapid and concerted recruitment of Ly-6Chi monocytes and CD11c+ DCs in mucosal and draining LN tissues.(A) Leukocyte infiltration of vaginal tract and iliac LN in infected BL/6 or IFNAR KO mice. (B,C) Accumulated number of infiltrated leukocyte subsets. Cells were prepared from vaginal tract (B; VT) and iliac LN (C; ILN) by collagenase digestion at 12, 24, 48, and 72 h pi and subcellular proportions of CD11b+Ly-6Chi and CD11b+Ly-6Ghi leukocytes were determined using flow cytometric analysis. Values in the representative dot-plots denote the average percentages of each population derived from at least four independent samples after gating on CD11b+ cells. Data in the bar chart represent the average ± SD of values derived from three individual experiments (n = 4–5). *, p<0.05; **, p<0.01; ***, p<0.001 compared with the levels of BL/6 or IFNAR KO mice at the indicated time point.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4664252&req=5

ppat.1005256.g001: IFN-I signaling is essential to induce the rapid and concerted recruitment of Ly-6Chi monocytes and CD11c+ DCs in mucosal and draining LN tissues.(A) Leukocyte infiltration of vaginal tract and iliac LN in infected BL/6 or IFNAR KO mice. (B,C) Accumulated number of infiltrated leukocyte subsets. Cells were prepared from vaginal tract (B; VT) and iliac LN (C; ILN) by collagenase digestion at 12, 24, 48, and 72 h pi and subcellular proportions of CD11b+Ly-6Chi and CD11b+Ly-6Ghi leukocytes were determined using flow cytometric analysis. Values in the representative dot-plots denote the average percentages of each population derived from at least four independent samples after gating on CD11b+ cells. Data in the bar chart represent the average ± SD of values derived from three individual experiments (n = 4–5). *, p<0.05; **, p<0.01; ***, p<0.001 compared with the levels of BL/6 or IFNAR KO mice at the indicated time point.
Mentions: However, the crucial regulatory factors that establish the early orchestrated environment of infiltrated leukocytes in mucosal tissues and their cellular source have been not defined in depth. CD11b+Ly-6Chi monocytes play a pivotal role in exerting direct antimicrobial activity or further differentiate into inflammatory DCs, which participate in innate and adaptive protective immunity [24,25]. In addition, since our preliminary data showed that expression of the chemokine CCL2, a major factor in monocyte recruitment, was early and markedly enhanced in the vaginal tract of WT BL/6 mice upon mucosal HSV-1 infection (S2 Fig), we performed kinetic examinations of recruited myeloid-derived leukocyte subpopulations in the vaginal tract and its draining LN (iliac LN) 12, 24, 48, and 72 h after infection. IFN-I signal was found to be critical for recruitment of CD11b+Ly-6Chi monocytes in vaginal tract and iliac LN during the early phase of HSV-1 mucosal infection (Fig 1A). Notably, WT BL/6 mice showed early infiltration of CD11b+Ly-6Chi monocytes with a 10- to 20-fold increase in the vaginal tract and iliac LN at 24 h after infection, compared to IFNAR KO mice. In contrast, IFNAR KO mice contained a greater number of accumulated CD11b+Ly-6Ghi granulocytes in the vaginal tract with levels peaking at 48 h pi, and the number of iliac CD11b+Ly-6Ghi granulocytes increased up to 72 h pi. These results indicate that maximal infiltration of CD11b+Ly-6Chi monocytes in the vaginal tract of BL/6 mice is established at around 24 h after infection, whereas the infiltration of CD11b+Ly-6Ghi granulocytes in IFNAR KO mice peaked at 48 h pi. When total accumulated subpopulations of myeloid-derived leukocytes and DCs were examined during the early phase after HSV-1 infection (12, 24, 48, and 72 h pi), maximum accumulation of CD11b+Ly-6Chi monocytes was detected in the vaginal tract of BL/6 mice with 4- to 5-fold increased levels at 24 h pi, despite a moderately increased number of total CD11b+ myeloid-derived cells in IFNAR KO mice (Fig 1B). In contrast, the total number of CD11+ DCs and its myeloid DC subpopulation (CD11b+CD11c+) was increased in the vaginal tract of BL/6 mice, with a delayed peak at 48 h pi compared to IFNAR KO mice. Likewise, iliac LN of BL/6 mice also showed early increased levels of total CD11b+Ly-6Chi monocytes with saturated levels at 24 h pi, and levels of CD11c+ DCs, the myeloid DC subset (CD11c+CD11b+) and other DC subsets (CD11b−CD11c+) peaked at around 48 h pi, whereas in IFNAR KO mice CD11b+Ly-6Ghi granulocytes showed gradually increasing levels up to 72 h pi (Fig 1C). To summarize, interestingly, these results indicate that infiltration of CD11b+Ly-6Chi monocytes (levels of which peaked at 24 h pi) precede that of CD11c+DCs (levels of which peaked at 48 h) in mucosal tissues upon HSV-1 infection. Therefore, these results suggest that IFN-I signaling plays a crucial role in establishing early infiltration of CD11b+Ly-6Chi monocytes and CD11c+ DCs in the submucosa area of the vaginal tract with a concerted pattern of recruitment, which could subsequently provide a well-controlled inflammatory reaction and adaptive protective immunity.

Bottom Line: However, the crucial regulators and cell populations that are affected by IFN-I to establish the early environment of innate cells in HSV-infected mucosal tissues are largely unknown.Also, IFN-I signaling in HSC-derived leukocytes appeared to suppress Ly-6Ghi neutrophil recruitment to ameliorate immunopathology.Therefore, this cascade response of resident-to-hematopoietic-to-resident cells that drives cytokine-to-chemokine-to-cytokine production to recruit orchestrated innate cells is critical for attenuation of HSV replication in inflamed tissues.

View Article: PubMed Central - PubMed

Affiliation: College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, Republic of Korea.

ABSTRACT
Type I interferon (IFN-I)-dependent orchestrated mobilization of innate cells in inflamed tissues is believed to play a critical role in controlling replication and CNS-invasion of herpes simplex virus (HSV). However, the crucial regulators and cell populations that are affected by IFN-I to establish the early environment of innate cells in HSV-infected mucosal tissues are largely unknown. Here, we found that IFN-I signaling promoted the differentiation of CCL2-producing Ly-6Chi monocytes and IFN-γ/granzyme B-producing NK cells, whereas deficiency of IFN-I signaling induced Ly-6Clo monocytes producing CXCL1 and CXCL2. More interestingly, recruitment of Ly-6Chi monocytes preceded that of NK cells with the levels peaked at 24 h post-infection in IFN-I-dependent manner, which was kinetically associated with the CCL2-CCL3 cascade response. Early Ly-6Chi monocyte recruitment was governed by CCL2 produced from hematopoietic stem cell (HSC)-derived leukocytes, whereas NK cell recruitment predominantly depended on CC chemokines produced by resident epithelial cells. Also, IFN-I signaling in HSC-derived leukocytes appeared to suppress Ly-6Ghi neutrophil recruitment to ameliorate immunopathology. Finally, tissue resident CD11bhiF4/80hi macrophages and CD11chiEpCAM+ dendritic cells appeared to produce initial CCL2 for migration-based self-amplification of early infiltrated Ly-6Chi monocytes upon stimulation by IFN-I produced from infected epithelial cells. Ultimately, these results decipher a detailed IFN-I-dependent pathway that establishes orchestrated mobilization of Ly-6Chi monocytes and NK cells through CCL2-CCL3 cascade response of HSC-derived leukocytes and epithelium-resident cells. Therefore, this cascade response of resident-to-hematopoietic-to-resident cells that drives cytokine-to-chemokine-to-cytokine production to recruit orchestrated innate cells is critical for attenuation of HSV replication in inflamed tissues.

Show MeSH
Related in: MedlinePlus