Limits...
Fragmented mitochondrial genomes in two suborders of parasitic lice of eutherian mammals (Anoplura and Rhynchophthirina, Insecta).

Shao R, Barker SC, Li H, Song S, Poudel S, Su Y - Sci Rep (2015)

Bottom Line: The typical animal mitochondrial (mt) genome organization, which consists of a single chromosome with 37 genes, was found in chewing lice in the suborders Amblycera and Ischnocera.Each minichromosome is 3.5-4.2 kb in size and has 2-6 genes.Our results indicate that mt genome fragmentation is shared by the suborders Anoplura and Rhynchophthirina.

View Article: PubMed Central - PubMed

Affiliation: GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4556, Australia.

ABSTRACT
Parasitic lice (order Phthiraptera) infest birds and mammals. The typical animal mitochondrial (mt) genome organization, which consists of a single chromosome with 37 genes, was found in chewing lice in the suborders Amblycera and Ischnocera. The sucking lice (suborder Anoplura) known, however, have fragmented mt genomes with 9-20 minichromosomes. We sequenced the mt genome of the elephant louse, Haematomyzus elephantis - the first species of chewing lice investigated from the suborder Rhynchophthirina. We identified 33 mt genes in the elephant louse, which were on 10 minichromosomes. Each minichromosome is 3.5-4.2 kb in size and has 2-6 genes. Phylogenetic analyses of mt genome sequences confirm that the elephant louse is more closely related to sucking lice than to the chewing lice in the Amblycera and Ischnocera. Our results indicate that mt genome fragmentation is shared by the suborders Anoplura and Rhynchophthirina. Nine of the 10 mt minichromosomes of the elephant louse differ from those of the sucking lice (Anoplura) known in gene content and gene arrangement, indicating that distinct mt karyotypes have evolved in Anoplura and Rhynchophthirina since they diverged ~92 million years ago.

No MeSH data available.


Related in: MedlinePlus

Inferred secondary structures of the mitochondrial tRNAs for leucine of the elephant louse, three human lice, two pig lice and two rat lice.Shared identical sequences between the two tRNA genes of each species are in red.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4663631&req=5

f3: Inferred secondary structures of the mitochondrial tRNAs for leucine of the elephant louse, three human lice, two pig lice and two rat lice.Shared identical sequences between the two tRNA genes of each species are in red.

Mentions: It is common for animals to have two tRNA genes for leucine, trnL1(tag) and trnL2(taa), in their mt genomes23. The two tRNA genes for leucine of the elephant louse have identical sequences except for three nucleotides starting from the third anti-codon position (Fig. 3). Near identical sequences between the two trnL genes were also observed in the human body louse, Pe. h. humanus, the head louse, Pe. h. capitis, and the pubic louse Pthirus pubis89. In the pig lice, Haemapinus suis and Haemapinus apri, and the rat lice, Polyplax asiatica and Po. spinulosa, the two trnL genes have identical or near identical sequences at the D-arm, the anti-codon arm and the V-loop but differ at the amino-acid arm and the T-arm (Fig. 3)1011.


Fragmented mitochondrial genomes in two suborders of parasitic lice of eutherian mammals (Anoplura and Rhynchophthirina, Insecta).

Shao R, Barker SC, Li H, Song S, Poudel S, Su Y - Sci Rep (2015)

Inferred secondary structures of the mitochondrial tRNAs for leucine of the elephant louse, three human lice, two pig lice and two rat lice.Shared identical sequences between the two tRNA genes of each species are in red.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4663631&req=5

f3: Inferred secondary structures of the mitochondrial tRNAs for leucine of the elephant louse, three human lice, two pig lice and two rat lice.Shared identical sequences between the two tRNA genes of each species are in red.
Mentions: It is common for animals to have two tRNA genes for leucine, trnL1(tag) and trnL2(taa), in their mt genomes23. The two tRNA genes for leucine of the elephant louse have identical sequences except for three nucleotides starting from the third anti-codon position (Fig. 3). Near identical sequences between the two trnL genes were also observed in the human body louse, Pe. h. humanus, the head louse, Pe. h. capitis, and the pubic louse Pthirus pubis89. In the pig lice, Haemapinus suis and Haemapinus apri, and the rat lice, Polyplax asiatica and Po. spinulosa, the two trnL genes have identical or near identical sequences at the D-arm, the anti-codon arm and the V-loop but differ at the amino-acid arm and the T-arm (Fig. 3)1011.

Bottom Line: The typical animal mitochondrial (mt) genome organization, which consists of a single chromosome with 37 genes, was found in chewing lice in the suborders Amblycera and Ischnocera.Each minichromosome is 3.5-4.2 kb in size and has 2-6 genes.Our results indicate that mt genome fragmentation is shared by the suborders Anoplura and Rhynchophthirina.

View Article: PubMed Central - PubMed

Affiliation: GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4556, Australia.

ABSTRACT
Parasitic lice (order Phthiraptera) infest birds and mammals. The typical animal mitochondrial (mt) genome organization, which consists of a single chromosome with 37 genes, was found in chewing lice in the suborders Amblycera and Ischnocera. The sucking lice (suborder Anoplura) known, however, have fragmented mt genomes with 9-20 minichromosomes. We sequenced the mt genome of the elephant louse, Haematomyzus elephantis - the first species of chewing lice investigated from the suborder Rhynchophthirina. We identified 33 mt genes in the elephant louse, which were on 10 minichromosomes. Each minichromosome is 3.5-4.2 kb in size and has 2-6 genes. Phylogenetic analyses of mt genome sequences confirm that the elephant louse is more closely related to sucking lice than to the chewing lice in the Amblycera and Ischnocera. Our results indicate that mt genome fragmentation is shared by the suborders Anoplura and Rhynchophthirina. Nine of the 10 mt minichromosomes of the elephant louse differ from those of the sucking lice (Anoplura) known in gene content and gene arrangement, indicating that distinct mt karyotypes have evolved in Anoplura and Rhynchophthirina since they diverged ~92 million years ago.

No MeSH data available.


Related in: MedlinePlus