Limits...
Pomegranate Peel Extract Prevents Bone Loss in a Preclinical Model of Osteoporosis and Stimulates Osteoblastic Differentiation in Vitro.

Spilmont M, Léotoing L, Davicco MJ, Lebecque P, Miot-Noirault E, Pilet P, Rios L, Wittrant Y, Coxam V - Nutrients (2015)

Bottom Line: The nutritional benefits of pomegranate have attracted great scientific interest.Among chronic diseases, osteoporosis, which is associated with bone remodelling impairment leading to progressive bone loss, could eventually benefit from antioxidant compounds because of the involvement of oxidative stress in the pathogenesis of osteopenia.In addition, PGPE appeared to substantially stimulate osteoblastic MC3T3-E1 alkaline phosphatase (ALP) activity at day 7, mineralization at day 21 and the transcription level of osteogenic markers.

View Article: PubMed Central - PubMed

Affiliation: Unité de Nutrition Humaine, CRNH Auvergne, UMR 1019, INRA, F-63000 Clermont-Ferrand, France. mel.spilmont@gmail.com.

ABSTRACT
The nutritional benefits of pomegranate have attracted great scientific interest. The pomegranate, including the pomegranate peel, has been used worldwide for many years as a fruit with medicinal activity, mostly antioxidant properties. Among chronic diseases, osteoporosis, which is associated with bone remodelling impairment leading to progressive bone loss, could eventually benefit from antioxidant compounds because of the involvement of oxidative stress in the pathogenesis of osteopenia. In this study, with in vivo and ex vivo experiments, we investigated whether the consumption of pomegranate peel extract (PGPE) could limit the process of osteopenia. We demonstrated that in ovariectomized (OVX) C57BL/6J mice, PGPE consumption was able to significantly prevent the decrease in bone mineral density (-31.9%; p < 0.001 vs. OVX mice) and bone microarchitecture impairment. Moreover, the exposure of RAW264.7 cells to serum harvested from mice that had been given a PGPE-enriched diet elicited reduced osteoclast differentiation and bone resorption, as shown by the inhibition of the major osteoclast markers. In addition, PGPE appeared to substantially stimulate osteoblastic MC3T3-E1 alkaline phosphatase (ALP) activity at day 7, mineralization at day 21 and the transcription level of osteogenic markers. PGPE may be effective in preventing the bone loss associated with ovariectomy in mice, and offers a promising alternative for the nutritional management of this disease.

No MeSH data available.


Related in: MedlinePlus

Composition of pomegranate peel extract (PGPE). (A) Chemical composition of PGPE (g/100 g dry matter). (B) Chemical structure of ellagic acid and punicalagin, the two major polyphenolic compounds of PGPE.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4663593&req=5

nutrients-07-05465-f001: Composition of pomegranate peel extract (PGPE). (A) Chemical composition of PGPE (g/100 g dry matter). (B) Chemical structure of ellagic acid and punicalagin, the two major polyphenolic compounds of PGPE.

Mentions: Throughout the study, we used the pomegranate (Punica granatum L.) Wonderful cultivar, which is cultured in Israel and was purchased from POMONA (Clermont-Ferrand, France). It has sweet-tart taste, deep purple-red fruits with soft seeds and delicious vinous flavour. For all the in vitro and in vivo studies, we used the same batch of pomegranates that were stored at 4 °C. A careful sampling was performed for the analyses. Fresh fruits were peeled manually, and the peel was squeezed using a commercial turnmix blender (Philips HR2084, France) to obtain a homogenous puree. Pomegranate peel extract (PGPE) was obtained by hydro-alcoholic (ethanol/water* (mass/mass) 70/30 (*water from pomegranate peel)) extraction from peel puree, with a pomegranate/solvent ratio of 1/15 (w/w), at 90 °C, for 3 h. The extract was then filtrated through a 0.2 μm filter, the ethanol was evaporated and the extract was frozen at −20 °C, directly after preparation and until analysis and diet formulation. The administrated dose of 10 mg polyphenols/kg body weight/day on mice corresponds to a consumption of approximately 93 mg polyphenol/day in human (it is estimated that the spontaneous daily intake of polyphenols is approximately 1 g) [55]. Chemical characterization of PGPE composition was performed by AGROBIO (Rennes, France) and VEGEPOLYS INNOVATION (Angers, France) (see PGPE composition on Figure 1).


Pomegranate Peel Extract Prevents Bone Loss in a Preclinical Model of Osteoporosis and Stimulates Osteoblastic Differentiation in Vitro.

Spilmont M, Léotoing L, Davicco MJ, Lebecque P, Miot-Noirault E, Pilet P, Rios L, Wittrant Y, Coxam V - Nutrients (2015)

Composition of pomegranate peel extract (PGPE). (A) Chemical composition of PGPE (g/100 g dry matter). (B) Chemical structure of ellagic acid and punicalagin, the two major polyphenolic compounds of PGPE.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4663593&req=5

nutrients-07-05465-f001: Composition of pomegranate peel extract (PGPE). (A) Chemical composition of PGPE (g/100 g dry matter). (B) Chemical structure of ellagic acid and punicalagin, the two major polyphenolic compounds of PGPE.
Mentions: Throughout the study, we used the pomegranate (Punica granatum L.) Wonderful cultivar, which is cultured in Israel and was purchased from POMONA (Clermont-Ferrand, France). It has sweet-tart taste, deep purple-red fruits with soft seeds and delicious vinous flavour. For all the in vitro and in vivo studies, we used the same batch of pomegranates that were stored at 4 °C. A careful sampling was performed for the analyses. Fresh fruits were peeled manually, and the peel was squeezed using a commercial turnmix blender (Philips HR2084, France) to obtain a homogenous puree. Pomegranate peel extract (PGPE) was obtained by hydro-alcoholic (ethanol/water* (mass/mass) 70/30 (*water from pomegranate peel)) extraction from peel puree, with a pomegranate/solvent ratio of 1/15 (w/w), at 90 °C, for 3 h. The extract was then filtrated through a 0.2 μm filter, the ethanol was evaporated and the extract was frozen at −20 °C, directly after preparation and until analysis and diet formulation. The administrated dose of 10 mg polyphenols/kg body weight/day on mice corresponds to a consumption of approximately 93 mg polyphenol/day in human (it is estimated that the spontaneous daily intake of polyphenols is approximately 1 g) [55]. Chemical characterization of PGPE composition was performed by AGROBIO (Rennes, France) and VEGEPOLYS INNOVATION (Angers, France) (see PGPE composition on Figure 1).

Bottom Line: The nutritional benefits of pomegranate have attracted great scientific interest.Among chronic diseases, osteoporosis, which is associated with bone remodelling impairment leading to progressive bone loss, could eventually benefit from antioxidant compounds because of the involvement of oxidative stress in the pathogenesis of osteopenia.In addition, PGPE appeared to substantially stimulate osteoblastic MC3T3-E1 alkaline phosphatase (ALP) activity at day 7, mineralization at day 21 and the transcription level of osteogenic markers.

View Article: PubMed Central - PubMed

Affiliation: Unité de Nutrition Humaine, CRNH Auvergne, UMR 1019, INRA, F-63000 Clermont-Ferrand, France. mel.spilmont@gmail.com.

ABSTRACT
The nutritional benefits of pomegranate have attracted great scientific interest. The pomegranate, including the pomegranate peel, has been used worldwide for many years as a fruit with medicinal activity, mostly antioxidant properties. Among chronic diseases, osteoporosis, which is associated with bone remodelling impairment leading to progressive bone loss, could eventually benefit from antioxidant compounds because of the involvement of oxidative stress in the pathogenesis of osteopenia. In this study, with in vivo and ex vivo experiments, we investigated whether the consumption of pomegranate peel extract (PGPE) could limit the process of osteopenia. We demonstrated that in ovariectomized (OVX) C57BL/6J mice, PGPE consumption was able to significantly prevent the decrease in bone mineral density (-31.9%; p < 0.001 vs. OVX mice) and bone microarchitecture impairment. Moreover, the exposure of RAW264.7 cells to serum harvested from mice that had been given a PGPE-enriched diet elicited reduced osteoclast differentiation and bone resorption, as shown by the inhibition of the major osteoclast markers. In addition, PGPE appeared to substantially stimulate osteoblastic MC3T3-E1 alkaline phosphatase (ALP) activity at day 7, mineralization at day 21 and the transcription level of osteogenic markers. PGPE may be effective in preventing the bone loss associated with ovariectomy in mice, and offers a promising alternative for the nutritional management of this disease.

No MeSH data available.


Related in: MedlinePlus