Limits...
Biomedical and Clinical Importance of Mussel-Inspired Polymers and Materials.

Kaushik NK, Kaushik N, Pardeshi S, Sharma JG, Lee SH, Choi EH - Mar Drugs (2015)

Bottom Line: However, the susceptibility to oxidation of 3,4-dihydroxyphenylalanine poses major challenges with regard to the practical translation of mussel adhesion.We discuss the anti-proliferative, anti-inflammatory, anti-microbial activity, and adhesive behaviors of mussel bio-products and mussel-inspired materials (MIMs) that make them attractive for synthetic adaptation.The development of biologically inspired adhesive interfaces, bioactive mussel products, MIMs, and arising areas of research leading to biomedical applications are considered in this review.

View Article: PubMed Central - PubMed

Affiliation: Plasma Bioscience Research Center, Kwangwoon University, Seoul 139701, Korea. kaushik.nagendra@kw.ac.kr.

ABSTRACT
The substance secreted by mussels, also known as nature's glue, is a type of liquid protein that hardens rapidly into a solid water-resistant adhesive material. While in seawater or saline conditions, mussels can adhere to all types of surfaces, sustaining its bonds via mussel adhesive proteins (MAPs), a group of proteins containing 3,4-dihydroxyphenylalanine (DOPA) and catecholic amino acid. Several aspects of this adhesion process have inspired the development of various types of synthetic materials for biomedical applications. Further, there is an urgent need to utilize biologically inspired strategies to develop new biocompatible materials for medical applications. Consequently, many researchers have recently reported bio-inspired techniques and materials that show results similar to or better than those shown by MAPs for a range of medical applications. However, the susceptibility to oxidation of 3,4-dihydroxyphenylalanine poses major challenges with regard to the practical translation of mussel adhesion. In this review, various strategies are discussed to provide an option for DOPA/metal ion chelation and to compensate for the limitations imposed by facile 3,4-dihydroxyphenylalanine autoxidation. We discuss the anti-proliferative, anti-inflammatory, anti-microbial activity, and adhesive behaviors of mussel bio-products and mussel-inspired materials (MIMs) that make them attractive for synthetic adaptation. The development of biologically inspired adhesive interfaces, bioactive mussel products, MIMs, and arising areas of research leading to biomedical applications are considered in this review.

Show MeSH

Related in: MedlinePlus

Reaction scheme presenting probable reactions of protein-bound 3,4-dihydroxy-phenylanine (DOPA). Protein-bound DOPA can be further oxidized to dopaquinone, donating two electrons to the higher valency-transition metal ions such as iron or copper present in chelates or metalloproteins. Auto-oxidation of the reduced transition metal can generate radicals such as reactive oxygen species, which can cause oxidative damage to other biomolecules. The proposed reaction of protein-bound (PB)-dopaquinone, resulting in ring closure and the release of four electrons, is described by Rodgers. Adapted the permission from [19]. Copyright © The American Chemical Society, 2000.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4663554&req=5

marinedrugs-13-06792-f005: Reaction scheme presenting probable reactions of protein-bound 3,4-dihydroxy-phenylanine (DOPA). Protein-bound DOPA can be further oxidized to dopaquinone, donating two electrons to the higher valency-transition metal ions such as iron or copper present in chelates or metalloproteins. Auto-oxidation of the reduced transition metal can generate radicals such as reactive oxygen species, which can cause oxidative damage to other biomolecules. The proposed reaction of protein-bound (PB)-dopaquinone, resulting in ring closure and the release of four electrons, is described by Rodgers. Adapted the permission from [19]. Copyright © The American Chemical Society, 2000.

Mentions: Researchers have investigated the composition and formation of byssal plaques and threads with the expectation of discovering technologically relevant innovations in chemistry and materials science. The DOPA residue appears to have double functionality with significant consequences for adsorption and cohesion. Nevertheless, it forms an array of weaker molecular interactions in the form of metal chelates, H-bonds, and pi-cations, which appear to dominate in terms of adsorption. On the other hand, DOPA and its redox couple, dopaquinone, can mediate the formation of covalent cross-links among byssal proteins (cohesion) [18]. Rodgers et al. [19] reported that protein-bound DOPA (PB-DOPA) could be formed in mammalian cells by both enzymatic pathways and radical reactions. PB-DOPA has reducing activity and the ability to cause damage to other essential biomolecules (Figure 5). The proposed reaction of PB-DOPA resulting in ring closure and the release of four electrons, was also described by Gieseg et al. [20]. This can be mediated through the replenishment of transition metals or from catechol-quinone-catechol redox reactions in the presence of cellular components such as ascorbate or cysteine, resulting in the amplification of radical damaging events. The formation of PB-DOPA confers on protein the capacity to chelate transition metals, generating protein “oxychelates” which may be the one factor among all factors that localize such damage. This investigation on PB-DOPA has mainly focused on detoxification and the proteolysis and excretion [17].


Biomedical and Clinical Importance of Mussel-Inspired Polymers and Materials.

Kaushik NK, Kaushik N, Pardeshi S, Sharma JG, Lee SH, Choi EH - Mar Drugs (2015)

Reaction scheme presenting probable reactions of protein-bound 3,4-dihydroxy-phenylanine (DOPA). Protein-bound DOPA can be further oxidized to dopaquinone, donating two electrons to the higher valency-transition metal ions such as iron or copper present in chelates or metalloproteins. Auto-oxidation of the reduced transition metal can generate radicals such as reactive oxygen species, which can cause oxidative damage to other biomolecules. The proposed reaction of protein-bound (PB)-dopaquinone, resulting in ring closure and the release of four electrons, is described by Rodgers. Adapted the permission from [19]. Copyright © The American Chemical Society, 2000.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4663554&req=5

marinedrugs-13-06792-f005: Reaction scheme presenting probable reactions of protein-bound 3,4-dihydroxy-phenylanine (DOPA). Protein-bound DOPA can be further oxidized to dopaquinone, donating two electrons to the higher valency-transition metal ions such as iron or copper present in chelates or metalloproteins. Auto-oxidation of the reduced transition metal can generate radicals such as reactive oxygen species, which can cause oxidative damage to other biomolecules. The proposed reaction of protein-bound (PB)-dopaquinone, resulting in ring closure and the release of four electrons, is described by Rodgers. Adapted the permission from [19]. Copyright © The American Chemical Society, 2000.
Mentions: Researchers have investigated the composition and formation of byssal plaques and threads with the expectation of discovering technologically relevant innovations in chemistry and materials science. The DOPA residue appears to have double functionality with significant consequences for adsorption and cohesion. Nevertheless, it forms an array of weaker molecular interactions in the form of metal chelates, H-bonds, and pi-cations, which appear to dominate in terms of adsorption. On the other hand, DOPA and its redox couple, dopaquinone, can mediate the formation of covalent cross-links among byssal proteins (cohesion) [18]. Rodgers et al. [19] reported that protein-bound DOPA (PB-DOPA) could be formed in mammalian cells by both enzymatic pathways and radical reactions. PB-DOPA has reducing activity and the ability to cause damage to other essential biomolecules (Figure 5). The proposed reaction of PB-DOPA resulting in ring closure and the release of four electrons, was also described by Gieseg et al. [20]. This can be mediated through the replenishment of transition metals or from catechol-quinone-catechol redox reactions in the presence of cellular components such as ascorbate or cysteine, resulting in the amplification of radical damaging events. The formation of PB-DOPA confers on protein the capacity to chelate transition metals, generating protein “oxychelates” which may be the one factor among all factors that localize such damage. This investigation on PB-DOPA has mainly focused on detoxification and the proteolysis and excretion [17].

Bottom Line: However, the susceptibility to oxidation of 3,4-dihydroxyphenylalanine poses major challenges with regard to the practical translation of mussel adhesion.We discuss the anti-proliferative, anti-inflammatory, anti-microbial activity, and adhesive behaviors of mussel bio-products and mussel-inspired materials (MIMs) that make them attractive for synthetic adaptation.The development of biologically inspired adhesive interfaces, bioactive mussel products, MIMs, and arising areas of research leading to biomedical applications are considered in this review.

View Article: PubMed Central - PubMed

Affiliation: Plasma Bioscience Research Center, Kwangwoon University, Seoul 139701, Korea. kaushik.nagendra@kw.ac.kr.

ABSTRACT
The substance secreted by mussels, also known as nature's glue, is a type of liquid protein that hardens rapidly into a solid water-resistant adhesive material. While in seawater or saline conditions, mussels can adhere to all types of surfaces, sustaining its bonds via mussel adhesive proteins (MAPs), a group of proteins containing 3,4-dihydroxyphenylalanine (DOPA) and catecholic amino acid. Several aspects of this adhesion process have inspired the development of various types of synthetic materials for biomedical applications. Further, there is an urgent need to utilize biologically inspired strategies to develop new biocompatible materials for medical applications. Consequently, many researchers have recently reported bio-inspired techniques and materials that show results similar to or better than those shown by MAPs for a range of medical applications. However, the susceptibility to oxidation of 3,4-dihydroxyphenylalanine poses major challenges with regard to the practical translation of mussel adhesion. In this review, various strategies are discussed to provide an option for DOPA/metal ion chelation and to compensate for the limitations imposed by facile 3,4-dihydroxyphenylalanine autoxidation. We discuss the anti-proliferative, anti-inflammatory, anti-microbial activity, and adhesive behaviors of mussel bio-products and mussel-inspired materials (MIMs) that make them attractive for synthetic adaptation. The development of biologically inspired adhesive interfaces, bioactive mussel products, MIMs, and arising areas of research leading to biomedical applications are considered in this review.

Show MeSH
Related in: MedlinePlus