Limits...
Identification of Antiviral Agents Targeting Hepatitis B Virus Promoter from Extracts of Indonesian Marine Organisms by a Novel Cell-Based Screening Assay.

Yamashita A, Fujimoto Y, Tamaki M, Setiawan A, Tanaka T, Okuyama-Dobashi K, Kasai H, Watashi K, Wakita T, Toyama M, Baba M, de Voogd NJ, Maekawa S, Enomoto N, Tanaka J, Moriishi K - Mar Drugs (2015)

Bottom Line: Solvent fractionation, column chromatography and NMR analysis revealed that 3,5-dibromo-2-(2,4-dibromophenoxy)-phenol (compound 1) and 3,4,5-tribromo-2-(2,4-dibromophenoxy)-phenol (compound 2), which are classified as polybrominated diphenyl ethers (PBDEs), were identified as anti-HBV agents in the extracts.Compounds 1 and 2 inhibited HBV core promoter activity as well as HBV production from HepG2.2.15.7 cells in a dose-dependent manner.The EC50 values of compounds 1 and 2 were 0.23 and 0.80 µM, respectively, while selectivity indexes of compound 1 and 2 were 18.2 and 12.8, respectively.

View Article: PubMed Central - PubMed

Affiliation: Department of Microbiology, Division of Medical Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan. atsuyay@yamanashi.ac.jp.

ABSTRACT
The current treatments of chronic hepatitis B (CHB) face a limited choice of vaccine, antibody and antiviral agents. The development of additional antiviral agents is still needed for improvement of CHB therapy. In this study, we established a screening system in order to identify compounds inhibiting the core promoter activity of hepatitis B virus (HBV). We prepared 80 extracts of marine organisms from the coral reefs of Indonesia and screened them by using this system. Eventually, two extracts showed high inhibitory activity (>95%) and low cytotoxicity (66% to 77%). Solvent fractionation, column chromatography and NMR analysis revealed that 3,5-dibromo-2-(2,4-dibromophenoxy)-phenol (compound 1) and 3,4,5-tribromo-2-(2,4-dibromophenoxy)-phenol (compound 2), which are classified as polybrominated diphenyl ethers (PBDEs), were identified as anti-HBV agents in the extracts. Compounds 1 and 2 inhibited HBV core promoter activity as well as HBV production from HepG2.2.15.7 cells in a dose-dependent manner. The EC50 values of compounds 1 and 2 were 0.23 and 0.80 µM, respectively, while selectivity indexes of compound 1 and 2 were 18.2 and 12.8, respectively. These results suggest that our cell-based HBV core promoter assay system is useful to determine anti-HBV compounds, and that two PBDE compounds are expected to be candidates of lead compounds for the development of anti-HBV drugs.

Show MeSH

Related in: MedlinePlus

Correlation between the inhibitory activity of each marine organism extract against HBV core promoter and the cell viability of each marine organism extract. Each closed circle represents one marine organism extract. The x-axis indicates inhibitory activity against HBV core promoter, while the y-axis indicates cell viability.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4663552&req=5

marinedrugs-13-06759-f003: Correlation between the inhibitory activity of each marine organism extract against HBV core promoter and the cell viability of each marine organism extract. Each closed circle represents one marine organism extract. The x-axis indicates inhibitory activity against HBV core promoter, while the y-axis indicates cell viability.

Mentions: We collected marine organisms from coral reefs of Indonesia and prepared 80 extracts from them with methanol (MeOH). We then screened them in order to discover anti-HBV agents using our screening system. Each extract was added at a final concentration of 25 µg/mL to the culture supernatant of Huh7 GL4.18 CURS_BC_AeUS cells. Luciferase activity and cell viability were measured 48 h after treatment. Among them, extracts of samples code named 00A14 and 00X18 exhibited high inhibitory activity of more than 95% and low cytotoxicity of 66% to 77% (Table 1, Figure 3). The 00A14 extract was prepared from the marine sponge Dysidea granulosa collected from the coral reefs of Simua Island, while the 00X18 extract was prepared from the marine sponge Dysidea sp. collected from the coral reefs of Buton strait. Dysidea granulosa of 00A14 was similar to Dysidea sp. of 00X18 regarding morphological features. The 00X18 extract, but not the 00A14 extract, was further analyzed in this study because of the much smaller amount of Dysidea granulosa than of Dysidea sp.


Identification of Antiviral Agents Targeting Hepatitis B Virus Promoter from Extracts of Indonesian Marine Organisms by a Novel Cell-Based Screening Assay.

Yamashita A, Fujimoto Y, Tamaki M, Setiawan A, Tanaka T, Okuyama-Dobashi K, Kasai H, Watashi K, Wakita T, Toyama M, Baba M, de Voogd NJ, Maekawa S, Enomoto N, Tanaka J, Moriishi K - Mar Drugs (2015)

Correlation between the inhibitory activity of each marine organism extract against HBV core promoter and the cell viability of each marine organism extract. Each closed circle represents one marine organism extract. The x-axis indicates inhibitory activity against HBV core promoter, while the y-axis indicates cell viability.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4663552&req=5

marinedrugs-13-06759-f003: Correlation between the inhibitory activity of each marine organism extract against HBV core promoter and the cell viability of each marine organism extract. Each closed circle represents one marine organism extract. The x-axis indicates inhibitory activity against HBV core promoter, while the y-axis indicates cell viability.
Mentions: We collected marine organisms from coral reefs of Indonesia and prepared 80 extracts from them with methanol (MeOH). We then screened them in order to discover anti-HBV agents using our screening system. Each extract was added at a final concentration of 25 µg/mL to the culture supernatant of Huh7 GL4.18 CURS_BC_AeUS cells. Luciferase activity and cell viability were measured 48 h after treatment. Among them, extracts of samples code named 00A14 and 00X18 exhibited high inhibitory activity of more than 95% and low cytotoxicity of 66% to 77% (Table 1, Figure 3). The 00A14 extract was prepared from the marine sponge Dysidea granulosa collected from the coral reefs of Simua Island, while the 00X18 extract was prepared from the marine sponge Dysidea sp. collected from the coral reefs of Buton strait. Dysidea granulosa of 00A14 was similar to Dysidea sp. of 00X18 regarding morphological features. The 00X18 extract, but not the 00A14 extract, was further analyzed in this study because of the much smaller amount of Dysidea granulosa than of Dysidea sp.

Bottom Line: Solvent fractionation, column chromatography and NMR analysis revealed that 3,5-dibromo-2-(2,4-dibromophenoxy)-phenol (compound 1) and 3,4,5-tribromo-2-(2,4-dibromophenoxy)-phenol (compound 2), which are classified as polybrominated diphenyl ethers (PBDEs), were identified as anti-HBV agents in the extracts.Compounds 1 and 2 inhibited HBV core promoter activity as well as HBV production from HepG2.2.15.7 cells in a dose-dependent manner.The EC50 values of compounds 1 and 2 were 0.23 and 0.80 µM, respectively, while selectivity indexes of compound 1 and 2 were 18.2 and 12.8, respectively.

View Article: PubMed Central - PubMed

Affiliation: Department of Microbiology, Division of Medical Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan. atsuyay@yamanashi.ac.jp.

ABSTRACT
The current treatments of chronic hepatitis B (CHB) face a limited choice of vaccine, antibody and antiviral agents. The development of additional antiviral agents is still needed for improvement of CHB therapy. In this study, we established a screening system in order to identify compounds inhibiting the core promoter activity of hepatitis B virus (HBV). We prepared 80 extracts of marine organisms from the coral reefs of Indonesia and screened them by using this system. Eventually, two extracts showed high inhibitory activity (>95%) and low cytotoxicity (66% to 77%). Solvent fractionation, column chromatography and NMR analysis revealed that 3,5-dibromo-2-(2,4-dibromophenoxy)-phenol (compound 1) and 3,4,5-tribromo-2-(2,4-dibromophenoxy)-phenol (compound 2), which are classified as polybrominated diphenyl ethers (PBDEs), were identified as anti-HBV agents in the extracts. Compounds 1 and 2 inhibited HBV core promoter activity as well as HBV production from HepG2.2.15.7 cells in a dose-dependent manner. The EC50 values of compounds 1 and 2 were 0.23 and 0.80 µM, respectively, while selectivity indexes of compound 1 and 2 were 18.2 and 12.8, respectively. These results suggest that our cell-based HBV core promoter assay system is useful to determine anti-HBV compounds, and that two PBDE compounds are expected to be candidates of lead compounds for the development of anti-HBV drugs.

Show MeSH
Related in: MedlinePlus