Limits...
Metabolic and hematological consequences of dietary deoxynivalenol interacting with systemic Escherichia coli lipopolysaccharide.

Bannert E, Tesch T, Kluess J, Frahm J, Kersten S, Kahlert S, Renner L, Rothkötter HJ, Dänicke S - Toxins (Basel) (2015)

Bottom Line: DON-feeding solely decreased portal glucose uptake (p < 0.05).LPS-decreased partial oxygen pressure (pO₂) overall (p < 0.05), but reduced pCO₂ only in arterial blood, and DON had no effect on either.Irrespective of catheter localization, LPS decreased pH and base-excess (p < 0.01), but increased lactate and anion-gap (p < 0.01), indicating an emerging lactic acidosis.

View Article: PubMed Central - PubMed

Affiliation: Institute of Animal Nutrition, Friedrich-Loeffler Institute (FLI), Federal Research Institute for Animal Health, Bundesallee 50, Braunschweig 38116, Germany. Erik.Bannert@fli.bund.de.

ABSTRACT
Previous studies have shown that chronic oral deoxynivalenol (DON) exposure modulated Escherichia coli lipopolysaccharide (LPS)-induced systemic inflammation, whereby the liver was suspected to play an important role. Thus, a total of 41 barrows was fed one of two maize-based diets, either a DON-diet (4.59 mg DON/kg feed, n = 19) or a control diet (CON, n = 22). Pigs were equipped with indwelling catheters for pre- or post-hepatic (portal vs. jugular catheter) infusion of either control (0.9% NaCl) or LPS (7.5 µg/kg BW) for 1h and frequent blood sampling. This design yielded six groups: CON_CONjugular‑CONportal, CON_CONjugular‑LPSportal, CON_LPSjugular‑CONportal, DON_CONjugular‑CONportal, DON_CONjugular‑LPSportal and DON_LPSjugular‑CONportal. Blood samples were analyzed for blood gases, electrolytes, glucose, pH, lactate and red hemogram. The red hemogram and electrolytes were not affected by DON and LPS. DON-feeding solely decreased portal glucose uptake (p < 0.05). LPS-decreased partial oxygen pressure (pO₂) overall (p < 0.05), but reduced pCO₂ only in arterial blood, and DON had no effect on either. Irrespective of catheter localization, LPS decreased pH and base-excess (p < 0.01), but increased lactate and anion-gap (p < 0.01), indicating an emerging lactic acidosis. Lactic acidosis was more pronounced in the group DON_LPSjugular-CONportal than in CON-fed counterparts (p < 0.05). DON-feeding aggravated the porcine acid-base balance in response to a subsequent immunostimulus dependent on its exposure site (pre- or post-hepatic).

Show MeSH

Related in: MedlinePlus

Experimental design.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4663533&req=5

toxins-07-04773-f009: Experimental design.

Mentions: A total of 41 barrows (German landrace, Mariensee, Germany) were randomly assigned to either a group receiving natural DON-contaminated feed (DON; 4.59 mg DON/kg feed; n = 19) or a control group (CON; n = 22) control diet (Table 3). Experimental groups, their treatment and the number of animals are illustrated in Figure 9. The pigs had an average initial weight of 25.8 ± 3.7 kg (means ± SD) and were fed restrictively with 2 single portions of 700 g per day, mixed with water and provided as mash. All barrows were housed in individual floor pens during the first 21 days of the trial and subsequently transferred into individual metabolism crates (described in [63]) until Day 29.


Metabolic and hematological consequences of dietary deoxynivalenol interacting with systemic Escherichia coli lipopolysaccharide.

Bannert E, Tesch T, Kluess J, Frahm J, Kersten S, Kahlert S, Renner L, Rothkötter HJ, Dänicke S - Toxins (Basel) (2015)

Experimental design.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4663533&req=5

toxins-07-04773-f009: Experimental design.
Mentions: A total of 41 barrows (German landrace, Mariensee, Germany) were randomly assigned to either a group receiving natural DON-contaminated feed (DON; 4.59 mg DON/kg feed; n = 19) or a control group (CON; n = 22) control diet (Table 3). Experimental groups, their treatment and the number of animals are illustrated in Figure 9. The pigs had an average initial weight of 25.8 ± 3.7 kg (means ± SD) and were fed restrictively with 2 single portions of 700 g per day, mixed with water and provided as mash. All barrows were housed in individual floor pens during the first 21 days of the trial and subsequently transferred into individual metabolism crates (described in [63]) until Day 29.

Bottom Line: DON-feeding solely decreased portal glucose uptake (p < 0.05).LPS-decreased partial oxygen pressure (pO₂) overall (p < 0.05), but reduced pCO₂ only in arterial blood, and DON had no effect on either.Irrespective of catheter localization, LPS decreased pH and base-excess (p < 0.01), but increased lactate and anion-gap (p < 0.01), indicating an emerging lactic acidosis.

View Article: PubMed Central - PubMed

Affiliation: Institute of Animal Nutrition, Friedrich-Loeffler Institute (FLI), Federal Research Institute for Animal Health, Bundesallee 50, Braunschweig 38116, Germany. Erik.Bannert@fli.bund.de.

ABSTRACT
Previous studies have shown that chronic oral deoxynivalenol (DON) exposure modulated Escherichia coli lipopolysaccharide (LPS)-induced systemic inflammation, whereby the liver was suspected to play an important role. Thus, a total of 41 barrows was fed one of two maize-based diets, either a DON-diet (4.59 mg DON/kg feed, n = 19) or a control diet (CON, n = 22). Pigs were equipped with indwelling catheters for pre- or post-hepatic (portal vs. jugular catheter) infusion of either control (0.9% NaCl) or LPS (7.5 µg/kg BW) for 1h and frequent blood sampling. This design yielded six groups: CON_CONjugular‑CONportal, CON_CONjugular‑LPSportal, CON_LPSjugular‑CONportal, DON_CONjugular‑CONportal, DON_CONjugular‑LPSportal and DON_LPSjugular‑CONportal. Blood samples were analyzed for blood gases, electrolytes, glucose, pH, lactate and red hemogram. The red hemogram and electrolytes were not affected by DON and LPS. DON-feeding solely decreased portal glucose uptake (p < 0.05). LPS-decreased partial oxygen pressure (pO₂) overall (p < 0.05), but reduced pCO₂ only in arterial blood, and DON had no effect on either. Irrespective of catheter localization, LPS decreased pH and base-excess (p < 0.01), but increased lactate and anion-gap (p < 0.01), indicating an emerging lactic acidosis. Lactic acidosis was more pronounced in the group DON_LPSjugular-CONportal than in CON-fed counterparts (p < 0.05). DON-feeding aggravated the porcine acid-base balance in response to a subsequent immunostimulus dependent on its exposure site (pre- or post-hepatic).

Show MeSH
Related in: MedlinePlus