Limits...
Ciprofloxacin Improves the Stemness of Human Dermal Papilla Cells.

Kiratipaiboon C, Tengamnuay P, Chanvorachote P - Stem Cells Int (2015)

Bottom Line: We found that ciprofloxacin exerted its effect through ATP-dependent tyrosine kinase/glycogen synthase kinase3β dependent mechanism which in turn upregulated β-catenin.The effects of ciprofloxacin in preserving stem cell features were confirmed in the primary dermal papilla cells directly obtained from human hair follicles.Together, these results revealed a novel application of ciprofloxacin for stem cell maintenance and provided the underlying mechanisms that are responsible for the stemness in dermal papilla cells.

View Article: PubMed Central - PubMed

Affiliation: Pharmaceutical Technology (International) Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.

ABSTRACT
Improvement in the expansion method of adult stem cells may augment their use in regenerative therapy. Using human dermal papilla cell line as well as primary dermal papilla cells as model systems, the present study demonstrated that ciprofloxacin treatment could prevent the loss of stemness during culture. Clonogenicity and stem cell markers of dermal papilla cells were shown to gradually decrease in the culture in a time-dependent manner. Treatment of the cells with nontoxic concentrations of ciprofloxacin could maintain both stem cell morphology and clonogenicity, as well as all stem cells markers. We found that ciprofloxacin exerted its effect through ATP-dependent tyrosine kinase/glycogen synthase kinase3β dependent mechanism which in turn upregulated β-catenin. Besides, ciprofloxacin was shown to induce epithelial-mesenchymal transition in DPCs as the transcription factors ZEB1 and Snail were significantly increased. Furthermore, the self-renewal proteins of Wnt/β-catenin pathway, namely, Nanog and Oct-4 were significantly upregulated in the ciprofloxacin-treated cells. The effects of ciprofloxacin in preserving stem cell features were confirmed in the primary dermal papilla cells directly obtained from human hair follicles. Together, these results revealed a novel application of ciprofloxacin for stem cell maintenance and provided the underlying mechanisms that are responsible for the stemness in dermal papilla cells.

No MeSH data available.


Related in: MedlinePlus

Cytotoxicity of CIP on DPCs. (a) Cells were treated with CIP (0–10 μg/mL) for 24 h. Cytotoxicity was determined by MTT assay. (b) After indicated treatment for 24 h, mode of cell death was examined by Hoechst 33342/PI costaining assay. Scale bar is 100 μm. The data represent the means of four independent samples ± SD.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4663358&req=5

fig1: Cytotoxicity of CIP on DPCs. (a) Cells were treated with CIP (0–10 μg/mL) for 24 h. Cytotoxicity was determined by MTT assay. (b) After indicated treatment for 24 h, mode of cell death was examined by Hoechst 33342/PI costaining assay. Scale bar is 100 μm. The data represent the means of four independent samples ± SD.

Mentions: To study the role of CIP on the stem cell property of DPCs, we first characterized cell viability and cell death response to CIP treatment in DPCs using MTT and Hoechst 33342/propidium iodide (PI) costaining assays. Treatment of the cells with CIP at the concentrations of 0–10 μg/mL for 24 h caused no significant change in cell viability compared with control levels (Figure 1(a)). Consistent with the Hoechst/PI apoptosis assay, our results indicated that the treatment drug at such concentrations caused neither apoptosis nor necrosis detected by Hoechst and PI, respectively (Figure 1(b)). This information may help to clarify that the following effects of CIP on DPCs were not a consequence of cytotoxic effect or cell stress.


Ciprofloxacin Improves the Stemness of Human Dermal Papilla Cells.

Kiratipaiboon C, Tengamnuay P, Chanvorachote P - Stem Cells Int (2015)

Cytotoxicity of CIP on DPCs. (a) Cells were treated with CIP (0–10 μg/mL) for 24 h. Cytotoxicity was determined by MTT assay. (b) After indicated treatment for 24 h, mode of cell death was examined by Hoechst 33342/PI costaining assay. Scale bar is 100 μm. The data represent the means of four independent samples ± SD.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4663358&req=5

fig1: Cytotoxicity of CIP on DPCs. (a) Cells were treated with CIP (0–10 μg/mL) for 24 h. Cytotoxicity was determined by MTT assay. (b) After indicated treatment for 24 h, mode of cell death was examined by Hoechst 33342/PI costaining assay. Scale bar is 100 μm. The data represent the means of four independent samples ± SD.
Mentions: To study the role of CIP on the stem cell property of DPCs, we first characterized cell viability and cell death response to CIP treatment in DPCs using MTT and Hoechst 33342/propidium iodide (PI) costaining assays. Treatment of the cells with CIP at the concentrations of 0–10 μg/mL for 24 h caused no significant change in cell viability compared with control levels (Figure 1(a)). Consistent with the Hoechst/PI apoptosis assay, our results indicated that the treatment drug at such concentrations caused neither apoptosis nor necrosis detected by Hoechst and PI, respectively (Figure 1(b)). This information may help to clarify that the following effects of CIP on DPCs were not a consequence of cytotoxic effect or cell stress.

Bottom Line: We found that ciprofloxacin exerted its effect through ATP-dependent tyrosine kinase/glycogen synthase kinase3β dependent mechanism which in turn upregulated β-catenin.The effects of ciprofloxacin in preserving stem cell features were confirmed in the primary dermal papilla cells directly obtained from human hair follicles.Together, these results revealed a novel application of ciprofloxacin for stem cell maintenance and provided the underlying mechanisms that are responsible for the stemness in dermal papilla cells.

View Article: PubMed Central - PubMed

Affiliation: Pharmaceutical Technology (International) Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.

ABSTRACT
Improvement in the expansion method of adult stem cells may augment their use in regenerative therapy. Using human dermal papilla cell line as well as primary dermal papilla cells as model systems, the present study demonstrated that ciprofloxacin treatment could prevent the loss of stemness during culture. Clonogenicity and stem cell markers of dermal papilla cells were shown to gradually decrease in the culture in a time-dependent manner. Treatment of the cells with nontoxic concentrations of ciprofloxacin could maintain both stem cell morphology and clonogenicity, as well as all stem cells markers. We found that ciprofloxacin exerted its effect through ATP-dependent tyrosine kinase/glycogen synthase kinase3β dependent mechanism which in turn upregulated β-catenin. Besides, ciprofloxacin was shown to induce epithelial-mesenchymal transition in DPCs as the transcription factors ZEB1 and Snail were significantly increased. Furthermore, the self-renewal proteins of Wnt/β-catenin pathway, namely, Nanog and Oct-4 were significantly upregulated in the ciprofloxacin-treated cells. The effects of ciprofloxacin in preserving stem cell features were confirmed in the primary dermal papilla cells directly obtained from human hair follicles. Together, these results revealed a novel application of ciprofloxacin for stem cell maintenance and provided the underlying mechanisms that are responsible for the stemness in dermal papilla cells.

No MeSH data available.


Related in: MedlinePlus