Limits...
First Steps Toward Ultrasound-Based Motion Compensation for Imaging and Therapy: Calibration with an Optical System and 4D PET Imaging.

Schwaab J, Kurz C, Sarti C, Bongers A, Schoenahl F, Bert C, Debus J, Parodi K, Jenne JW - Front Oncol (2015)

Bottom Line: Furthermore, it is demonstrated that the US probe being within the PET field of view generally has no relevant influence on the image quality.The accuracy and precision of all the steps in the calibration workflow for US tracking-based 4D PET imaging are found to be in an acceptable range for clinical implementation.Eventually, we show in vitro that an US-based motion tracking in absolute room coordinates with a moving US transducer is feasible.

View Article: PubMed Central - PubMed

Affiliation: Mediri GmbH , Heidelberg , Germany.

ABSTRACT
Target motion, particularly in the abdomen, due to respiration or patient movement is still a challenge in many diagnostic and therapeutic processes. Hence, methods to detect and compensate this motion are required. Diagnostic ultrasound (US) represents a non-invasive and dose-free alternative to fluoroscopy, providing more information about internal target motion than respiration belt or optical tracking. The goal of this project is to develop an US-based motion tracking for real-time motion correction in radiation therapy and diagnostic imaging, notably in 4D positron emission tomography (PET). In this work, a workflow is established to enable the transformation of US tracking data to the coordinates of the treatment delivery or imaging system - even if the US probe is moving due to respiration. It is shown that the US tracking signal is equally adequate for 4D PET image reconstruction as the clinically used respiration belt and provides additional opportunities in this concern. Furthermore, it is demonstrated that the US probe being within the PET field of view generally has no relevant influence on the image quality. The accuracy and precision of all the steps in the calibration workflow for US tracking-based 4D PET imaging are found to be in an acceptable range for clinical implementation. Eventually, we show in vitro that an US-based motion tracking in absolute room coordinates with a moving US transducer is feasible.

No MeSH data available.


Related in: MedlinePlus

Comparison of US- (squares) and ANZAI-detected (rhombi) motion trajectory. As the US system provides a considerably lower frame rate, the data have been interpolated. A generally good agreement between the two data sets was found. Particularly the positions in time of the inhale peaks agree precisely, typically within 100 ms.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4663279&req=5

Figure 5: Comparison of US- (squares) and ANZAI-detected (rhombi) motion trajectory. As the US system provides a considerably lower frame rate, the data have been interpolated. A generally good agreement between the two data sets was found. Particularly the positions in time of the inhale peaks agree precisely, typically within 100 ms.

Mentions: The acquired tracking data of the US system and the ANZAI surrogate are compared to each other in Figure 5. Of the 10 available tracking parameters determined by the US device for both imaging planes, only the displacement in the direction of motion (z-axis of the PET scanner), used in the retrospective LM data manipulation, is depicted. The other parameters were found to be constant in time for the selected one-dimensional motion aligned to the perpendicular US planes. As shown for both investigated motion patterns, a good agreement between the two tracking systems was found. Minor deviations were typically seen in the exhale part of the trajectory. In the performed 4D-gated PET image reconstruction, however, only the positions of the inhale peaks were of importance. Here, a typical deviation in time of less than 100 ms was found for all the investigated breathing patterns.


First Steps Toward Ultrasound-Based Motion Compensation for Imaging and Therapy: Calibration with an Optical System and 4D PET Imaging.

Schwaab J, Kurz C, Sarti C, Bongers A, Schoenahl F, Bert C, Debus J, Parodi K, Jenne JW - Front Oncol (2015)

Comparison of US- (squares) and ANZAI-detected (rhombi) motion trajectory. As the US system provides a considerably lower frame rate, the data have been interpolated. A generally good agreement between the two data sets was found. Particularly the positions in time of the inhale peaks agree precisely, typically within 100 ms.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4663279&req=5

Figure 5: Comparison of US- (squares) and ANZAI-detected (rhombi) motion trajectory. As the US system provides a considerably lower frame rate, the data have been interpolated. A generally good agreement between the two data sets was found. Particularly the positions in time of the inhale peaks agree precisely, typically within 100 ms.
Mentions: The acquired tracking data of the US system and the ANZAI surrogate are compared to each other in Figure 5. Of the 10 available tracking parameters determined by the US device for both imaging planes, only the displacement in the direction of motion (z-axis of the PET scanner), used in the retrospective LM data manipulation, is depicted. The other parameters were found to be constant in time for the selected one-dimensional motion aligned to the perpendicular US planes. As shown for both investigated motion patterns, a good agreement between the two tracking systems was found. Minor deviations were typically seen in the exhale part of the trajectory. In the performed 4D-gated PET image reconstruction, however, only the positions of the inhale peaks were of importance. Here, a typical deviation in time of less than 100 ms was found for all the investigated breathing patterns.

Bottom Line: Furthermore, it is demonstrated that the US probe being within the PET field of view generally has no relevant influence on the image quality.The accuracy and precision of all the steps in the calibration workflow for US tracking-based 4D PET imaging are found to be in an acceptable range for clinical implementation.Eventually, we show in vitro that an US-based motion tracking in absolute room coordinates with a moving US transducer is feasible.

View Article: PubMed Central - PubMed

Affiliation: Mediri GmbH , Heidelberg , Germany.

ABSTRACT
Target motion, particularly in the abdomen, due to respiration or patient movement is still a challenge in many diagnostic and therapeutic processes. Hence, methods to detect and compensate this motion are required. Diagnostic ultrasound (US) represents a non-invasive and dose-free alternative to fluoroscopy, providing more information about internal target motion than respiration belt or optical tracking. The goal of this project is to develop an US-based motion tracking for real-time motion correction in radiation therapy and diagnostic imaging, notably in 4D positron emission tomography (PET). In this work, a workflow is established to enable the transformation of US tracking data to the coordinates of the treatment delivery or imaging system - even if the US probe is moving due to respiration. It is shown that the US tracking signal is equally adequate for 4D PET image reconstruction as the clinically used respiration belt and provides additional opportunities in this concern. Furthermore, it is demonstrated that the US probe being within the PET field of view generally has no relevant influence on the image quality. The accuracy and precision of all the steps in the calibration workflow for US tracking-based 4D PET imaging are found to be in an acceptable range for clinical implementation. Eventually, we show in vitro that an US-based motion tracking in absolute room coordinates with a moving US transducer is feasible.

No MeSH data available.


Related in: MedlinePlus