Limits...
First Steps Toward Ultrasound-Based Motion Compensation for Imaging and Therapy: Calibration with an Optical System and 4D PET Imaging.

Schwaab J, Kurz C, Sarti C, Bongers A, Schoenahl F, Bert C, Debus J, Parodi K, Jenne JW - Front Oncol (2015)

Bottom Line: Furthermore, it is demonstrated that the US probe being within the PET field of view generally has no relevant influence on the image quality.The accuracy and precision of all the steps in the calibration workflow for US tracking-based 4D PET imaging are found to be in an acceptable range for clinical implementation.Eventually, we show in vitro that an US-based motion tracking in absolute room coordinates with a moving US transducer is feasible.

View Article: PubMed Central - PubMed

Affiliation: Mediri GmbH , Heidelberg , Germany.

ABSTRACT
Target motion, particularly in the abdomen, due to respiration or patient movement is still a challenge in many diagnostic and therapeutic processes. Hence, methods to detect and compensate this motion are required. Diagnostic ultrasound (US) represents a non-invasive and dose-free alternative to fluoroscopy, providing more information about internal target motion than respiration belt or optical tracking. The goal of this project is to develop an US-based motion tracking for real-time motion correction in radiation therapy and diagnostic imaging, notably in 4D positron emission tomography (PET). In this work, a workflow is established to enable the transformation of US tracking data to the coordinates of the treatment delivery or imaging system - even if the US probe is moving due to respiration. It is shown that the US tracking signal is equally adequate for 4D PET image reconstruction as the clinically used respiration belt and provides additional opportunities in this concern. Furthermore, it is demonstrated that the US probe being within the PET field of view generally has no relevant influence on the image quality. The accuracy and precision of all the steps in the calibration workflow for US tracking-based 4D PET imaging are found to be in an acceptable range for clinical implementation. Eventually, we show in vitro that an US-based motion tracking in absolute room coordinates with a moving US transducer is feasible.

No MeSH data available.


Related in: MedlinePlus

The four involved coordinate systems in ultrasound motion tracking: ultrasound image plane US (zUS = 0), optical marker tool T, optical sensor S as well as treatment room (“world”) W, and the transformations between them.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4663279&req=5

Figure 1: The four involved coordinate systems in ultrasound motion tracking: ultrasound image plane US (zUS = 0), optical marker tool T, optical sensor S as well as treatment room (“world”) W, and the transformations between them.

Mentions: The optical US motion tracking setup comprises an US tracking system with a probe that is coupled to an optical marker as well as an optical tracking system, which detects the probe motion (see Figure 1).


First Steps Toward Ultrasound-Based Motion Compensation for Imaging and Therapy: Calibration with an Optical System and 4D PET Imaging.

Schwaab J, Kurz C, Sarti C, Bongers A, Schoenahl F, Bert C, Debus J, Parodi K, Jenne JW - Front Oncol (2015)

The four involved coordinate systems in ultrasound motion tracking: ultrasound image plane US (zUS = 0), optical marker tool T, optical sensor S as well as treatment room (“world”) W, and the transformations between them.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4663279&req=5

Figure 1: The four involved coordinate systems in ultrasound motion tracking: ultrasound image plane US (zUS = 0), optical marker tool T, optical sensor S as well as treatment room (“world”) W, and the transformations between them.
Mentions: The optical US motion tracking setup comprises an US tracking system with a probe that is coupled to an optical marker as well as an optical tracking system, which detects the probe motion (see Figure 1).

Bottom Line: Furthermore, it is demonstrated that the US probe being within the PET field of view generally has no relevant influence on the image quality.The accuracy and precision of all the steps in the calibration workflow for US tracking-based 4D PET imaging are found to be in an acceptable range for clinical implementation.Eventually, we show in vitro that an US-based motion tracking in absolute room coordinates with a moving US transducer is feasible.

View Article: PubMed Central - PubMed

Affiliation: Mediri GmbH , Heidelberg , Germany.

ABSTRACT
Target motion, particularly in the abdomen, due to respiration or patient movement is still a challenge in many diagnostic and therapeutic processes. Hence, methods to detect and compensate this motion are required. Diagnostic ultrasound (US) represents a non-invasive and dose-free alternative to fluoroscopy, providing more information about internal target motion than respiration belt or optical tracking. The goal of this project is to develop an US-based motion tracking for real-time motion correction in radiation therapy and diagnostic imaging, notably in 4D positron emission tomography (PET). In this work, a workflow is established to enable the transformation of US tracking data to the coordinates of the treatment delivery or imaging system - even if the US probe is moving due to respiration. It is shown that the US tracking signal is equally adequate for 4D PET image reconstruction as the clinically used respiration belt and provides additional opportunities in this concern. Furthermore, it is demonstrated that the US probe being within the PET field of view generally has no relevant influence on the image quality. The accuracy and precision of all the steps in the calibration workflow for US tracking-based 4D PET imaging are found to be in an acceptable range for clinical implementation. Eventually, we show in vitro that an US-based motion tracking in absolute room coordinates with a moving US transducer is feasible.

No MeSH data available.


Related in: MedlinePlus