Limits...
Impaired Autonomic Responses to Emotional Stimuli in Autoimmune Limbic Encephalitis.

Schröder O, Schriewer E, Golombeck KS, Kürten J, Lohmann H, Schwindt W, Wiendl H, Bruchmann M, Melzer N, Straube T - Front Neurol (2015)

Bottom Line: The amygdala constitutes a brain area substantial for processing of emotional, especially fear-related signals.There was no comparable impairment in behavioral data (emotion report, valence, and arousal ratings).The results point to a defective modulation of sympathetic responses during emotional stimulation in patients with LE, probably due to impaired functioning of the amygdala.

View Article: PubMed Central - PubMed

Affiliation: Institute of Medical Psychology and Systems Neuroscience, University of Muenster , Muenster , Germany.

ABSTRACT
Limbic encephalitis (LE) is an autoimmune-mediated disorder that affects structures of the limbic system, in particular, the amygdala. The amygdala constitutes a brain area substantial for processing of emotional, especially fear-related signals. The amygdala is also involved in neuroendocrine and autonomic functions, including skin conductance responses (SCRs) to emotionally arousing stimuli. This study investigates behavioral and autonomic responses to discrete emotion evoking and neutral film clips in a patient suffering from LE associated with contactin-associated protein-2 (CASPR2) antibodies as compared to a healthy control group. Results show a lack of SCRs in the patient while watching the film clips, with significant differences compared to healthy controls in the case of fear-inducing videos. There was no comparable impairment in behavioral data (emotion report, valence, and arousal ratings). The results point to a defective modulation of sympathetic responses during emotional stimulation in patients with LE, probably due to impaired functioning of the amygdala.

No MeSH data available.


Related in: MedlinePlus

Axial (A) and coronal (B) fluid-attenuated inversion recovery (FLAIR) images showing bilateral volume and signal increase in amygdala and anterior hippocampus. Correspondingly, cerebral fluor-18-deoxyglucose-positron emission tomography/computed tomography (FDG-PET/-CT) revealed hypermetabolism of the right anterior mesial temporal lobe (C).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4663278&req=5

Figure 1: Axial (A) and coronal (B) fluid-attenuated inversion recovery (FLAIR) images showing bilateral volume and signal increase in amygdala and anterior hippocampus. Correspondingly, cerebral fluor-18-deoxyglucose-positron emission tomography/computed tomography (FDG-PET/-CT) revealed hypermetabolism of the right anterior mesial temporal lobe (C).

Mentions: We studied patient R.B., a 65-year-old left-handed male of Italian decent with lower secondary education (<9 years). R.B. suffered from LE associated with antibodies against CASPR2. He presented with progressive disturbance of attention and memory and a depressed mood since December 2013 (BDI-score: 31, severe depression). He experienced seven to eight nocturnal generalized tonic–clonic but no apparent complex partial seizures. Neurological examination was unremarkable. Medical history disclosed arterial hypertension, chronic obstructive pulmonary disease (COPD), and diabetes mellitus type II. He received oral treatment with valsartan 160 mg/day, hydrochlorothiazide 6.25 mg/day, and glimepiride 0.5 mg/day. HbA1c was 7.1% (normal 4.3–6.1%) or 54.1 mmol/mol (normal 24–4 mmol/mol), the remaining routine laboratory findings were unremarkable. Peripheral nerve conduction studies were normal. Cerebral MRI at 3-T was performed at initial presentation in April 2013 and revealed bilateral volume and signal increase of amygdala and anterior hippocampus on axial and coronar T2-weighted and fluid-attenuated inversion recovery (FLAIR) sequences (Figure 1) consistent with temporo-mesial encephalitis (5, 6). Accordingly, cerebral fluor-18-deoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) at that time revealed hypermetabolism of the right anterior mesial temporal lobe (Figure 1). Cerebrospinal fluid analysis showed mild lymphomonocytic pleocytosis (7/μl; normal <5/μl) with mildly elevated protein levels (786 mg/l; normal <500 mg/l), and blood–cerebrospinal fluid barrier dysfunction (albumin ratio 11.5 × 10−3; normal <7.5 × 10−3) but no quantitative or qualitative evidence of intrathecal immunoglobulin synthesis. Glucose and lactate levels were normal. Anti-neuronal antibody testing in serum and cerebrospinal fluid showed high titers of antibodies against CASPR2 [titer 1:3200 in serum (normal <1:10) and 1:320 in cerebrospinal fluid (normal <1:10) on indirect immunofluorescence testing (IFT), Euroimmun Luebeck, Germany]. Mobile long-term surface electroencephalography recording for 3 days showed interictal anterior temporal epileptic activity, which was more pronounced on the right (85%) as compared to the left (15%) side. Moreover, two electroencephalographic seizures of right anterior temporal origin have been recorded. Clinical neuropsychological assessment revealed impairment of verbal but not figural learning and memory, attention, executive functions, and visuoconstruction (see Table 1 for detailed neuropsychological characteristics). A tumor search using whole-body FDG-PET/CT was unremarkable. R.B. received additional oral anticonvulsive treatment with levetiracetam (2 g/day); he was included in the study before initiation of any immunotherapy and more than 2 weeks after the last clinical seizure event.


Impaired Autonomic Responses to Emotional Stimuli in Autoimmune Limbic Encephalitis.

Schröder O, Schriewer E, Golombeck KS, Kürten J, Lohmann H, Schwindt W, Wiendl H, Bruchmann M, Melzer N, Straube T - Front Neurol (2015)

Axial (A) and coronal (B) fluid-attenuated inversion recovery (FLAIR) images showing bilateral volume and signal increase in amygdala and anterior hippocampus. Correspondingly, cerebral fluor-18-deoxyglucose-positron emission tomography/computed tomography (FDG-PET/-CT) revealed hypermetabolism of the right anterior mesial temporal lobe (C).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4663278&req=5

Figure 1: Axial (A) and coronal (B) fluid-attenuated inversion recovery (FLAIR) images showing bilateral volume and signal increase in amygdala and anterior hippocampus. Correspondingly, cerebral fluor-18-deoxyglucose-positron emission tomography/computed tomography (FDG-PET/-CT) revealed hypermetabolism of the right anterior mesial temporal lobe (C).
Mentions: We studied patient R.B., a 65-year-old left-handed male of Italian decent with lower secondary education (<9 years). R.B. suffered from LE associated with antibodies against CASPR2. He presented with progressive disturbance of attention and memory and a depressed mood since December 2013 (BDI-score: 31, severe depression). He experienced seven to eight nocturnal generalized tonic–clonic but no apparent complex partial seizures. Neurological examination was unremarkable. Medical history disclosed arterial hypertension, chronic obstructive pulmonary disease (COPD), and diabetes mellitus type II. He received oral treatment with valsartan 160 mg/day, hydrochlorothiazide 6.25 mg/day, and glimepiride 0.5 mg/day. HbA1c was 7.1% (normal 4.3–6.1%) or 54.1 mmol/mol (normal 24–4 mmol/mol), the remaining routine laboratory findings were unremarkable. Peripheral nerve conduction studies were normal. Cerebral MRI at 3-T was performed at initial presentation in April 2013 and revealed bilateral volume and signal increase of amygdala and anterior hippocampus on axial and coronar T2-weighted and fluid-attenuated inversion recovery (FLAIR) sequences (Figure 1) consistent with temporo-mesial encephalitis (5, 6). Accordingly, cerebral fluor-18-deoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) at that time revealed hypermetabolism of the right anterior mesial temporal lobe (Figure 1). Cerebrospinal fluid analysis showed mild lymphomonocytic pleocytosis (7/μl; normal <5/μl) with mildly elevated protein levels (786 mg/l; normal <500 mg/l), and blood–cerebrospinal fluid barrier dysfunction (albumin ratio 11.5 × 10−3; normal <7.5 × 10−3) but no quantitative or qualitative evidence of intrathecal immunoglobulin synthesis. Glucose and lactate levels were normal. Anti-neuronal antibody testing in serum and cerebrospinal fluid showed high titers of antibodies against CASPR2 [titer 1:3200 in serum (normal <1:10) and 1:320 in cerebrospinal fluid (normal <1:10) on indirect immunofluorescence testing (IFT), Euroimmun Luebeck, Germany]. Mobile long-term surface electroencephalography recording for 3 days showed interictal anterior temporal epileptic activity, which was more pronounced on the right (85%) as compared to the left (15%) side. Moreover, two electroencephalographic seizures of right anterior temporal origin have been recorded. Clinical neuropsychological assessment revealed impairment of verbal but not figural learning and memory, attention, executive functions, and visuoconstruction (see Table 1 for detailed neuropsychological characteristics). A tumor search using whole-body FDG-PET/CT was unremarkable. R.B. received additional oral anticonvulsive treatment with levetiracetam (2 g/day); he was included in the study before initiation of any immunotherapy and more than 2 weeks after the last clinical seizure event.

Bottom Line: The amygdala constitutes a brain area substantial for processing of emotional, especially fear-related signals.There was no comparable impairment in behavioral data (emotion report, valence, and arousal ratings).The results point to a defective modulation of sympathetic responses during emotional stimulation in patients with LE, probably due to impaired functioning of the amygdala.

View Article: PubMed Central - PubMed

Affiliation: Institute of Medical Psychology and Systems Neuroscience, University of Muenster , Muenster , Germany.

ABSTRACT
Limbic encephalitis (LE) is an autoimmune-mediated disorder that affects structures of the limbic system, in particular, the amygdala. The amygdala constitutes a brain area substantial for processing of emotional, especially fear-related signals. The amygdala is also involved in neuroendocrine and autonomic functions, including skin conductance responses (SCRs) to emotionally arousing stimuli. This study investigates behavioral and autonomic responses to discrete emotion evoking and neutral film clips in a patient suffering from LE associated with contactin-associated protein-2 (CASPR2) antibodies as compared to a healthy control group. Results show a lack of SCRs in the patient while watching the film clips, with significant differences compared to healthy controls in the case of fear-inducing videos. There was no comparable impairment in behavioral data (emotion report, valence, and arousal ratings). The results point to a defective modulation of sympathetic responses during emotional stimulation in patients with LE, probably due to impaired functioning of the amygdala.

No MeSH data available.


Related in: MedlinePlus