Limits...
Neural Substrates of Sexual Desire in Individuals with Problematic Hypersexual Behavior.

Seok JW, Sohn JH - Front Behav Neurosci (2015)

Bottom Line: In addition, the hemodynamic patterns in the activated areas differed between the groups.Consistent with the findings of brain imaging studies of substance and behavior addiction, individuals with the behavioral characteristics of PHB and enhanced desire exhibited altered activation in the prefrontal cortex and subcortical regions.In conclusion, our results will help to characterize the behaviors and associated neural mechanisms of individuals with PHB.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Brain Research Institute, Chungnam National University Daejeon, South Korea.

ABSTRACT
Studies on the characteristics of individuals with hypersexual disorder have been accumulating due to increasing concerns about problematic hypersexual behavior (PHB). Currently, relatively little is known about the underlying behavioral and neural mechanisms of sexual desire. Our study aimed to investigate the neural correlates of sexual desire with event-related functional magnetic resonance imaging (fMRI). Twenty-three individuals with PHB and 22 age-matched healthy controls were scanned while they passively viewed sexual and nonsexual stimuli. The subjects' levels of sexual desire were assessed in response to each sexual stimulus. Relative to controls, individuals with PHB experienced more frequent and enhanced sexual desire during exposure to sexual stimuli. Greater activation was observed in the caudate nucleus, inferior parietal lobe, dorsal anterior cingulate gyrus, thalamus, and dorsolateral prefrontal cortex in the PHB group than in the control group. In addition, the hemodynamic patterns in the activated areas differed between the groups. Consistent with the findings of brain imaging studies of substance and behavior addiction, individuals with the behavioral characteristics of PHB and enhanced desire exhibited altered activation in the prefrontal cortex and subcortical regions. In conclusion, our results will help to characterize the behaviors and associated neural mechanisms of individuals with PHB.

No MeSH data available.


Related in: MedlinePlus

Results of the between-group analysis. (A) Bilateral thalamus (MNI coordinate; x = 6, y = −36, z = 4) (B) Right dorsolateral prefrontal cortex (MNI coordinate; x = 56, y = 10, z = 22) (C) Left caudate nucleus (MNI coordinate; x = −38, y = −32, z = 2) (D) Right supramarginal gyrus (MNI coordinate; x = 50, y = −42, z = 32) (E) Right dorsal anterior cingulate gyrus (MNI coordinate; x = 24, y = −16, z = 34). Results of the comparisons of activation in sexual stimuli minus nonsexual stimuli between the PHB and control groups (p < 0.05, False Discovery Rate, corrected). The control group and the PHB group are represented as blue and red, respectively. The y-axis shows the percent signal change and the error bars represents Standard Error of the Mean.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4663274&req=5

Figure 2: Results of the between-group analysis. (A) Bilateral thalamus (MNI coordinate; x = 6, y = −36, z = 4) (B) Right dorsolateral prefrontal cortex (MNI coordinate; x = 56, y = 10, z = 22) (C) Left caudate nucleus (MNI coordinate; x = −38, y = −32, z = 2) (D) Right supramarginal gyrus (MNI coordinate; x = 50, y = −42, z = 32) (E) Right dorsal anterior cingulate gyrus (MNI coordinate; x = 24, y = −16, z = 34). Results of the comparisons of activation in sexual stimuli minus nonsexual stimuli between the PHB and control groups (p < 0.05, False Discovery Rate, corrected). The control group and the PHB group are represented as blue and red, respectively. The y-axis shows the percent signal change and the error bars represents Standard Error of the Mean.

Mentions: In the between-group analysis, the PHB group exhibited greater activation in the right dorsal anterior cingulate cortex (dACC; BA 24 and 32), bilateral thalami, left caudate nucleus, right DLPFC (BA 9, 46), and right supramarginal gyrus (BA 40) relative to the activation in the control group during exposure to sexual stimuli compared with nonsexual stimuli. No brain regions in the control group showed greater activation than in the PHB group. All of the coordinates for the activated voxels are shown as MNI coordinates in Tables 3, 4. Figure 2 shows the percent signal changes in the control and PHB groups in each experimental condition (that is, sexual and nonsexual conditions) for the selected ROIs, and Figure 3 displays the mean time series for each group of the percent signal changes at each time point in the ROIs during the presentation of each sexual stimulus (total of 12 s; 5 and 7 s thereafter) based on the results of the between group analysis.


Neural Substrates of Sexual Desire in Individuals with Problematic Hypersexual Behavior.

Seok JW, Sohn JH - Front Behav Neurosci (2015)

Results of the between-group analysis. (A) Bilateral thalamus (MNI coordinate; x = 6, y = −36, z = 4) (B) Right dorsolateral prefrontal cortex (MNI coordinate; x = 56, y = 10, z = 22) (C) Left caudate nucleus (MNI coordinate; x = −38, y = −32, z = 2) (D) Right supramarginal gyrus (MNI coordinate; x = 50, y = −42, z = 32) (E) Right dorsal anterior cingulate gyrus (MNI coordinate; x = 24, y = −16, z = 34). Results of the comparisons of activation in sexual stimuli minus nonsexual stimuli between the PHB and control groups (p < 0.05, False Discovery Rate, corrected). The control group and the PHB group are represented as blue and red, respectively. The y-axis shows the percent signal change and the error bars represents Standard Error of the Mean.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4663274&req=5

Figure 2: Results of the between-group analysis. (A) Bilateral thalamus (MNI coordinate; x = 6, y = −36, z = 4) (B) Right dorsolateral prefrontal cortex (MNI coordinate; x = 56, y = 10, z = 22) (C) Left caudate nucleus (MNI coordinate; x = −38, y = −32, z = 2) (D) Right supramarginal gyrus (MNI coordinate; x = 50, y = −42, z = 32) (E) Right dorsal anterior cingulate gyrus (MNI coordinate; x = 24, y = −16, z = 34). Results of the comparisons of activation in sexual stimuli minus nonsexual stimuli between the PHB and control groups (p < 0.05, False Discovery Rate, corrected). The control group and the PHB group are represented as blue and red, respectively. The y-axis shows the percent signal change and the error bars represents Standard Error of the Mean.
Mentions: In the between-group analysis, the PHB group exhibited greater activation in the right dorsal anterior cingulate cortex (dACC; BA 24 and 32), bilateral thalami, left caudate nucleus, right DLPFC (BA 9, 46), and right supramarginal gyrus (BA 40) relative to the activation in the control group during exposure to sexual stimuli compared with nonsexual stimuli. No brain regions in the control group showed greater activation than in the PHB group. All of the coordinates for the activated voxels are shown as MNI coordinates in Tables 3, 4. Figure 2 shows the percent signal changes in the control and PHB groups in each experimental condition (that is, sexual and nonsexual conditions) for the selected ROIs, and Figure 3 displays the mean time series for each group of the percent signal changes at each time point in the ROIs during the presentation of each sexual stimulus (total of 12 s; 5 and 7 s thereafter) based on the results of the between group analysis.

Bottom Line: In addition, the hemodynamic patterns in the activated areas differed between the groups.Consistent with the findings of brain imaging studies of substance and behavior addiction, individuals with the behavioral characteristics of PHB and enhanced desire exhibited altered activation in the prefrontal cortex and subcortical regions.In conclusion, our results will help to characterize the behaviors and associated neural mechanisms of individuals with PHB.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Brain Research Institute, Chungnam National University Daejeon, South Korea.

ABSTRACT
Studies on the characteristics of individuals with hypersexual disorder have been accumulating due to increasing concerns about problematic hypersexual behavior (PHB). Currently, relatively little is known about the underlying behavioral and neural mechanisms of sexual desire. Our study aimed to investigate the neural correlates of sexual desire with event-related functional magnetic resonance imaging (fMRI). Twenty-three individuals with PHB and 22 age-matched healthy controls were scanned while they passively viewed sexual and nonsexual stimuli. The subjects' levels of sexual desire were assessed in response to each sexual stimulus. Relative to controls, individuals with PHB experienced more frequent and enhanced sexual desire during exposure to sexual stimuli. Greater activation was observed in the caudate nucleus, inferior parietal lobe, dorsal anterior cingulate gyrus, thalamus, and dorsolateral prefrontal cortex in the PHB group than in the control group. In addition, the hemodynamic patterns in the activated areas differed between the groups. Consistent with the findings of brain imaging studies of substance and behavior addiction, individuals with the behavioral characteristics of PHB and enhanced desire exhibited altered activation in the prefrontal cortex and subcortical regions. In conclusion, our results will help to characterize the behaviors and associated neural mechanisms of individuals with PHB.

No MeSH data available.


Related in: MedlinePlus