Limits...
Actinobacterial Diversity in the Sediments of Five Cold Springs on the Qinghai-Tibet Plateau.

Yang J, Li X, Huang L, Jiang H - Front Microbiol (2015)

Bottom Line: The actinobacterial composition varied among the investigated cold springs and were significantly correlated (r = 0.748, P = 0.021) to environmental variables.The actinobacterial communities in the cold springs were more diverse than other cold habitats on the Tibetan Plateau, and their compositions showed unique geographical distribution characteristics.Statistical analyses showed that biogeographical isolation and unique environmental conditions might be major factors influencing actinobacterial distribution among the investigated cold springs.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Wuhan, China.

ABSTRACT
The actinobacterial diversity was investigated in the sediments of five cold springs in Wuli region on the Qinghai-Tibet Plateau using 16S rRNA gene phylogenetic analysis. The actinobacterial communities of the studied cold springs were diverse and the obtained actinobacterial operational taxonomic units were classified into 12 actinobacterial orders (e.g., Acidimicrobiales, Corynebacteriales, Gaiellales, Geodermatophilales, Jiangellales, Kineosporiales, Micromonosporales, Micrococcales, Nakamurellales, Propionibacteriales, Pseudonocardiales, Streptomycetales) and unclassified Actinobacteria. The actinobacterial composition varied among the investigated cold springs and were significantly correlated (r = 0.748, P = 0.021) to environmental variables. The actinobacterial communities in the cold springs were more diverse than other cold habitats on the Tibetan Plateau, and their compositions showed unique geographical distribution characteristics. Statistical analyses showed that biogeographical isolation and unique environmental conditions might be major factors influencing actinobacterial distribution among the investigated cold springs.

No MeSH data available.


Related in: MedlinePlus

Jaccard similarity-based cluster analysis showing the differences between actinobacterial 16S rRNA gene clone libraries of the QTP cold springs in this study and those from hot springs on the QTP (Jiang et al., 2012a), (hyper-)saline lakes on the QTP (Jiang et al., 2010a), freshwater sample of Daotang river on the QTP (Jiang et al., 2012b), Tengchong hot springs of Yunnan Province, China (Song et al., 2009), Atlantic ocean deep-sea sediment in the edge of the Saharan debris flow near the Canary Islands (Stach et al., 2003), and waters near the Three Gorges Dam in the middle reach of the Yangtze River (Jiang et al., 2012b).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4663260&req=5

Figure 4: Jaccard similarity-based cluster analysis showing the differences between actinobacterial 16S rRNA gene clone libraries of the QTP cold springs in this study and those from hot springs on the QTP (Jiang et al., 2012a), (hyper-)saline lakes on the QTP (Jiang et al., 2010a), freshwater sample of Daotang river on the QTP (Jiang et al., 2012b), Tengchong hot springs of Yunnan Province, China (Song et al., 2009), Atlantic ocean deep-sea sediment in the edge of the Saharan debris flow near the Canary Islands (Stach et al., 2003), and waters near the Three Gorges Dam in the middle reach of the Yangtze River (Jiang et al., 2012b).

Mentions: Cluster analysis showed that the cold spring geochemistry (Figure 3A) presented similar grouping patterns to actinobacterial community composition (Figure 3B) among the studied samples. Mantel tests showed that actinobacterial community composition of the studied cold springs was significantly correlated (r = 0.748, P = 0.021) with the combined environmental variables but not significantly (P > 0.05) with any single environmental variable measured in this study. Furthermore, cluster analysis showed that the actinobacterial communities in the QTP samples (including clod springs, hot springs and lakes) were grouped into one cluster, which has little similarity (Jaccard similarity < 0.05) with that of marine sediments from Atlantic ocean and Tengchong hot springs (Figure 4).


Actinobacterial Diversity in the Sediments of Five Cold Springs on the Qinghai-Tibet Plateau.

Yang J, Li X, Huang L, Jiang H - Front Microbiol (2015)

Jaccard similarity-based cluster analysis showing the differences between actinobacterial 16S rRNA gene clone libraries of the QTP cold springs in this study and those from hot springs on the QTP (Jiang et al., 2012a), (hyper-)saline lakes on the QTP (Jiang et al., 2010a), freshwater sample of Daotang river on the QTP (Jiang et al., 2012b), Tengchong hot springs of Yunnan Province, China (Song et al., 2009), Atlantic ocean deep-sea sediment in the edge of the Saharan debris flow near the Canary Islands (Stach et al., 2003), and waters near the Three Gorges Dam in the middle reach of the Yangtze River (Jiang et al., 2012b).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4663260&req=5

Figure 4: Jaccard similarity-based cluster analysis showing the differences between actinobacterial 16S rRNA gene clone libraries of the QTP cold springs in this study and those from hot springs on the QTP (Jiang et al., 2012a), (hyper-)saline lakes on the QTP (Jiang et al., 2010a), freshwater sample of Daotang river on the QTP (Jiang et al., 2012b), Tengchong hot springs of Yunnan Province, China (Song et al., 2009), Atlantic ocean deep-sea sediment in the edge of the Saharan debris flow near the Canary Islands (Stach et al., 2003), and waters near the Three Gorges Dam in the middle reach of the Yangtze River (Jiang et al., 2012b).
Mentions: Cluster analysis showed that the cold spring geochemistry (Figure 3A) presented similar grouping patterns to actinobacterial community composition (Figure 3B) among the studied samples. Mantel tests showed that actinobacterial community composition of the studied cold springs was significantly correlated (r = 0.748, P = 0.021) with the combined environmental variables but not significantly (P > 0.05) with any single environmental variable measured in this study. Furthermore, cluster analysis showed that the actinobacterial communities in the QTP samples (including clod springs, hot springs and lakes) were grouped into one cluster, which has little similarity (Jaccard similarity < 0.05) with that of marine sediments from Atlantic ocean and Tengchong hot springs (Figure 4).

Bottom Line: The actinobacterial composition varied among the investigated cold springs and were significantly correlated (r = 0.748, P = 0.021) to environmental variables.The actinobacterial communities in the cold springs were more diverse than other cold habitats on the Tibetan Plateau, and their compositions showed unique geographical distribution characteristics.Statistical analyses showed that biogeographical isolation and unique environmental conditions might be major factors influencing actinobacterial distribution among the investigated cold springs.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Wuhan, China.

ABSTRACT
The actinobacterial diversity was investigated in the sediments of five cold springs in Wuli region on the Qinghai-Tibet Plateau using 16S rRNA gene phylogenetic analysis. The actinobacterial communities of the studied cold springs were diverse and the obtained actinobacterial operational taxonomic units were classified into 12 actinobacterial orders (e.g., Acidimicrobiales, Corynebacteriales, Gaiellales, Geodermatophilales, Jiangellales, Kineosporiales, Micromonosporales, Micrococcales, Nakamurellales, Propionibacteriales, Pseudonocardiales, Streptomycetales) and unclassified Actinobacteria. The actinobacterial composition varied among the investigated cold springs and were significantly correlated (r = 0.748, P = 0.021) to environmental variables. The actinobacterial communities in the cold springs were more diverse than other cold habitats on the Tibetan Plateau, and their compositions showed unique geographical distribution characteristics. Statistical analyses showed that biogeographical isolation and unique environmental conditions might be major factors influencing actinobacterial distribution among the investigated cold springs.

No MeSH data available.


Related in: MedlinePlus