Limits...
Actinobacterial Diversity in the Sediments of Five Cold Springs on the Qinghai-Tibet Plateau.

Yang J, Li X, Huang L, Jiang H - Front Microbiol (2015)

Bottom Line: The actinobacterial composition varied among the investigated cold springs and were significantly correlated (r = 0.748, P = 0.021) to environmental variables.The actinobacterial communities in the cold springs were more diverse than other cold habitats on the Tibetan Plateau, and their compositions showed unique geographical distribution characteristics.Statistical analyses showed that biogeographical isolation and unique environmental conditions might be major factors influencing actinobacterial distribution among the investigated cold springs.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Wuhan, China.

ABSTRACT
The actinobacterial diversity was investigated in the sediments of five cold springs in Wuli region on the Qinghai-Tibet Plateau using 16S rRNA gene phylogenetic analysis. The actinobacterial communities of the studied cold springs were diverse and the obtained actinobacterial operational taxonomic units were classified into 12 actinobacterial orders (e.g., Acidimicrobiales, Corynebacteriales, Gaiellales, Geodermatophilales, Jiangellales, Kineosporiales, Micromonosporales, Micrococcales, Nakamurellales, Propionibacteriales, Pseudonocardiales, Streptomycetales) and unclassified Actinobacteria. The actinobacterial composition varied among the investigated cold springs and were significantly correlated (r = 0.748, P = 0.021) to environmental variables. The actinobacterial communities in the cold springs were more diverse than other cold habitats on the Tibetan Plateau, and their compositions showed unique geographical distribution characteristics. Statistical analyses showed that biogeographical isolation and unique environmental conditions might be major factors influencing actinobacterial distribution among the investigated cold springs.

No MeSH data available.


Related in: MedlinePlus

ContinuedMaximum-likelihood tree (partial sequences, ∼640 bp) showing the phylogenetic relationships of the actinobacterial 16S rRNA gene sequences cloned from the studied samples to closely related sequences from the GenBank database. One representative clone sequence within each OTU was shown. Bootstrap values of >50% (for 1000 iterations) were shown.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4663260&req=5

Figure 2: ContinuedMaximum-likelihood tree (partial sequences, ∼640 bp) showing the phylogenetic relationships of the actinobacterial 16S rRNA gene sequences cloned from the studied samples to closely related sequences from the GenBank database. One representative clone sequence within each OTU was shown. Bootstrap values of >50% (for 1000 iterations) were shown.

Mentions: Five clone libraries (QCS1, QCS3, QCS4, QCS5, and QCS6) were constructed. A total of 484 actinobacterial 16S rRNA gene clone sequences were obtained: 117, 85, 76, 103, and 103 clone sequences for QCS1, QCS3, QCS4, QCS5, and QCS6, respectively. The number of sequenced clones represented 76–91% coverage for each clone library (Table 2). Out of these clone sequences, one hundred and twenty OTUs (29, 27, 32, 27, 31 for QCS1, QCS3, QCS4, QCS5, and QCS6, respectively) were identified (Table 2). These identified OTUs could be classified into Acidimicrobiales, Corynebacteriales, Gaiellales, Geodermatophilales, Jiangellales, Kineosporiales, Micromonosporales, Micrococcales, Nakamurellales, Propionibacteriales, Pseudonocardiales, Streptomycetales, and unclassified Actinobacteria (Figure 2). The diversity indices such as Shannon (2.6–3.0), Chao 1 (34.3–46.2) varied among the studied cold springs (Table 2). Acidimicrobiales, Geodermatophilales, Micrococcales, Propionibacteriales, and Pseudonocardiales were dominant actinobacterial groups (Figure 3C). Among the studied samples, Acidimicrobiales, Micrococcales, Pseudonocardiales, and unclassified Actinobacteria were dominant (relative abundance > 10%) in the QCS1 sample; Acidimicrobiales, Micrococcales, Pseudonocardiales, and Propionibacteriales dominated in the QCS3 sample; Acidimicrobiales, Geodermatophilales, Micrococcales, and Propionibacteriales were dominant in the QCS4 and QCS5 samples; and Acidimicrobiales, Corynebacteriales, Kineosporiales, Micrococcales, and Propionibacteriales dominated in the QCS6 sample (Figure 3C).


Actinobacterial Diversity in the Sediments of Five Cold Springs on the Qinghai-Tibet Plateau.

Yang J, Li X, Huang L, Jiang H - Front Microbiol (2015)

ContinuedMaximum-likelihood tree (partial sequences, ∼640 bp) showing the phylogenetic relationships of the actinobacterial 16S rRNA gene sequences cloned from the studied samples to closely related sequences from the GenBank database. One representative clone sequence within each OTU was shown. Bootstrap values of >50% (for 1000 iterations) were shown.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4663260&req=5

Figure 2: ContinuedMaximum-likelihood tree (partial sequences, ∼640 bp) showing the phylogenetic relationships of the actinobacterial 16S rRNA gene sequences cloned from the studied samples to closely related sequences from the GenBank database. One representative clone sequence within each OTU was shown. Bootstrap values of >50% (for 1000 iterations) were shown.
Mentions: Five clone libraries (QCS1, QCS3, QCS4, QCS5, and QCS6) were constructed. A total of 484 actinobacterial 16S rRNA gene clone sequences were obtained: 117, 85, 76, 103, and 103 clone sequences for QCS1, QCS3, QCS4, QCS5, and QCS6, respectively. The number of sequenced clones represented 76–91% coverage for each clone library (Table 2). Out of these clone sequences, one hundred and twenty OTUs (29, 27, 32, 27, 31 for QCS1, QCS3, QCS4, QCS5, and QCS6, respectively) were identified (Table 2). These identified OTUs could be classified into Acidimicrobiales, Corynebacteriales, Gaiellales, Geodermatophilales, Jiangellales, Kineosporiales, Micromonosporales, Micrococcales, Nakamurellales, Propionibacteriales, Pseudonocardiales, Streptomycetales, and unclassified Actinobacteria (Figure 2). The diversity indices such as Shannon (2.6–3.0), Chao 1 (34.3–46.2) varied among the studied cold springs (Table 2). Acidimicrobiales, Geodermatophilales, Micrococcales, Propionibacteriales, and Pseudonocardiales were dominant actinobacterial groups (Figure 3C). Among the studied samples, Acidimicrobiales, Micrococcales, Pseudonocardiales, and unclassified Actinobacteria were dominant (relative abundance > 10%) in the QCS1 sample; Acidimicrobiales, Micrococcales, Pseudonocardiales, and Propionibacteriales dominated in the QCS3 sample; Acidimicrobiales, Geodermatophilales, Micrococcales, and Propionibacteriales were dominant in the QCS4 and QCS5 samples; and Acidimicrobiales, Corynebacteriales, Kineosporiales, Micrococcales, and Propionibacteriales dominated in the QCS6 sample (Figure 3C).

Bottom Line: The actinobacterial composition varied among the investigated cold springs and were significantly correlated (r = 0.748, P = 0.021) to environmental variables.The actinobacterial communities in the cold springs were more diverse than other cold habitats on the Tibetan Plateau, and their compositions showed unique geographical distribution characteristics.Statistical analyses showed that biogeographical isolation and unique environmental conditions might be major factors influencing actinobacterial distribution among the investigated cold springs.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Wuhan, China.

ABSTRACT
The actinobacterial diversity was investigated in the sediments of five cold springs in Wuli region on the Qinghai-Tibet Plateau using 16S rRNA gene phylogenetic analysis. The actinobacterial communities of the studied cold springs were diverse and the obtained actinobacterial operational taxonomic units were classified into 12 actinobacterial orders (e.g., Acidimicrobiales, Corynebacteriales, Gaiellales, Geodermatophilales, Jiangellales, Kineosporiales, Micromonosporales, Micrococcales, Nakamurellales, Propionibacteriales, Pseudonocardiales, Streptomycetales) and unclassified Actinobacteria. The actinobacterial composition varied among the investigated cold springs and were significantly correlated (r = 0.748, P = 0.021) to environmental variables. The actinobacterial communities in the cold springs were more diverse than other cold habitats on the Tibetan Plateau, and their compositions showed unique geographical distribution characteristics. Statistical analyses showed that biogeographical isolation and unique environmental conditions might be major factors influencing actinobacterial distribution among the investigated cold springs.

No MeSH data available.


Related in: MedlinePlus