Limits...
Sequence-based Analysis of the Vitis vinifera L. cv Cabernet Sauvignon Grape Must Mycobiome in Three South African Vineyards Employing Distinct Agronomic Systems.

Setati ME, Jacobson D, Bauer FF - Front Microbiol (2015)

Bottom Line: Data generated in vineyards have furthermore highlighted significant regional differences in vineyard biodiversity, hinting at the possibility that such differences might be responsible for regional differences in wine style and character, a hypothesis referred to as "microbial terroir." The current study further contributes to this body of work by comparing the mycobiome associated with South African (SA) Cabernet Sauvignon grapes in three neighboring vineyards that employ different agronomic approaches, and comparing the outcome with similar data sets from Californian vineyards.The Biodynamic vineyard was found to harbor a more diverse fungal community (H = 2.6) than the conventional (H = 2.1) and integrated (H = 1.8) vineyards.Comparison of metagenomic datasets from the three SA vineyards and previously published data from Californian vineyards revealed only 25% of the fungi in the SA dataset was also present in the Californian dataset, with greater variation evident amongst ubiquitous epiphytic fungi.

View Article: PubMed Central - PubMed

Affiliation: Institute for Wine Biotechnology, Stellenbosch University Stellenbosch, South Africa.

ABSTRACT
Recent microbiomic research of agricultural habitats has highlighted tremendous microbial biodiversity associated with such ecosystems. Data generated in vineyards have furthermore highlighted significant regional differences in vineyard biodiversity, hinting at the possibility that such differences might be responsible for regional differences in wine style and character, a hypothesis referred to as "microbial terroir." The current study further contributes to this body of work by comparing the mycobiome associated with South African (SA) Cabernet Sauvignon grapes in three neighboring vineyards that employ different agronomic approaches, and comparing the outcome with similar data sets from Californian vineyards. The aim of this study was to fully characterize the mycobiomes associated with the grapes from these vineyards. The data revealed approximately 10 times more fungal diversity than what is typically retrieved from culture-based studies. The Biodynamic vineyard was found to harbor a more diverse fungal community (H = 2.6) than the conventional (H = 2.1) and integrated (H = 1.8) vineyards. The data show that ascomycota are the most abundant phylum in the three vineyards, with Aureobasidium pullulans and its close relative Kabatiella microsticta being the most dominant fungi. This is the first report to reveal a high incidence of K. microsticta in the grape/wine ecosystem. Different common wine yeast species, such as Metschnikowia pulcherrima and Starmerella bacillaris dominated the mycobiome in the three vineyards. The data show that the filamentous fungi are the most abundant community in grape must although they are not regarded as relevant during wine fermentation. Comparison of metagenomic datasets from the three SA vineyards and previously published data from Californian vineyards revealed only 25% of the fungi in the SA dataset was also present in the Californian dataset, with greater variation evident amongst ubiquitous epiphytic fungi.

No MeSH data available.


A Venn diagram representing comparison of yeasts isolated from the BD, CONV and IPW vineyard must samples in SA against the species obtained from amplicon sequencing data derived from the SA and Californian grape must samples.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4663253&req=5

Figure 7: A Venn diagram representing comparison of yeasts isolated from the BD, CONV and IPW vineyard must samples in SA against the species obtained from amplicon sequencing data derived from the SA and Californian grape must samples.

Mentions: Composite lists of the fungal species detected in the grape musts from the three SA vineyards and those found in Californian vineyards through Illumina amplicon sequencing were generated and matched against the list of yeast isolates from the SA vineyards. The data revealed vast differences in fungal diversity detected through amplicon sequencing from the two countries with only 29 fungal species shared between the two data sets (Figure 7). Fifteen species were common between the SA and California mycobiomes, while 10 species were common across SA yeast isolates, SA mycobiomes and California mycobiomes. An additional four species were common between the SA isolates and California mycobiomes. The common fungi can be broadly grouped into (i) yeasts typically found in the wine microbial consortium such as L. thermotolerans, T. delbrueckii, S. bacillaris, S. cerevisiae, I ssatchenkia terricola, H. uvarum, and Hanseniaspora guilliermondii, (ii) genera that are frequent components of plant endophyte surveys such as Alternaria, Davidiella, Lewia, Phoma, Aureobasidium, and Epicoccum and (iii) ubiquitous epiphytes such as Penicillium and Aspergillus species. Our data also revealed one yeast species isolate (M. pulcherrima) that was detected only in the musts from SA mycobiomes and not the California mycobiomes (Figure 7).


Sequence-based Analysis of the Vitis vinifera L. cv Cabernet Sauvignon Grape Must Mycobiome in Three South African Vineyards Employing Distinct Agronomic Systems.

Setati ME, Jacobson D, Bauer FF - Front Microbiol (2015)

A Venn diagram representing comparison of yeasts isolated from the BD, CONV and IPW vineyard must samples in SA against the species obtained from amplicon sequencing data derived from the SA and Californian grape must samples.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4663253&req=5

Figure 7: A Venn diagram representing comparison of yeasts isolated from the BD, CONV and IPW vineyard must samples in SA against the species obtained from amplicon sequencing data derived from the SA and Californian grape must samples.
Mentions: Composite lists of the fungal species detected in the grape musts from the three SA vineyards and those found in Californian vineyards through Illumina amplicon sequencing were generated and matched against the list of yeast isolates from the SA vineyards. The data revealed vast differences in fungal diversity detected through amplicon sequencing from the two countries with only 29 fungal species shared between the two data sets (Figure 7). Fifteen species were common between the SA and California mycobiomes, while 10 species were common across SA yeast isolates, SA mycobiomes and California mycobiomes. An additional four species were common between the SA isolates and California mycobiomes. The common fungi can be broadly grouped into (i) yeasts typically found in the wine microbial consortium such as L. thermotolerans, T. delbrueckii, S. bacillaris, S. cerevisiae, I ssatchenkia terricola, H. uvarum, and Hanseniaspora guilliermondii, (ii) genera that are frequent components of plant endophyte surveys such as Alternaria, Davidiella, Lewia, Phoma, Aureobasidium, and Epicoccum and (iii) ubiquitous epiphytes such as Penicillium and Aspergillus species. Our data also revealed one yeast species isolate (M. pulcherrima) that was detected only in the musts from SA mycobiomes and not the California mycobiomes (Figure 7).

Bottom Line: Data generated in vineyards have furthermore highlighted significant regional differences in vineyard biodiversity, hinting at the possibility that such differences might be responsible for regional differences in wine style and character, a hypothesis referred to as "microbial terroir." The current study further contributes to this body of work by comparing the mycobiome associated with South African (SA) Cabernet Sauvignon grapes in three neighboring vineyards that employ different agronomic approaches, and comparing the outcome with similar data sets from Californian vineyards.The Biodynamic vineyard was found to harbor a more diverse fungal community (H = 2.6) than the conventional (H = 2.1) and integrated (H = 1.8) vineyards.Comparison of metagenomic datasets from the three SA vineyards and previously published data from Californian vineyards revealed only 25% of the fungi in the SA dataset was also present in the Californian dataset, with greater variation evident amongst ubiquitous epiphytic fungi.

View Article: PubMed Central - PubMed

Affiliation: Institute for Wine Biotechnology, Stellenbosch University Stellenbosch, South Africa.

ABSTRACT
Recent microbiomic research of agricultural habitats has highlighted tremendous microbial biodiversity associated with such ecosystems. Data generated in vineyards have furthermore highlighted significant regional differences in vineyard biodiversity, hinting at the possibility that such differences might be responsible for regional differences in wine style and character, a hypothesis referred to as "microbial terroir." The current study further contributes to this body of work by comparing the mycobiome associated with South African (SA) Cabernet Sauvignon grapes in three neighboring vineyards that employ different agronomic approaches, and comparing the outcome with similar data sets from Californian vineyards. The aim of this study was to fully characterize the mycobiomes associated with the grapes from these vineyards. The data revealed approximately 10 times more fungal diversity than what is typically retrieved from culture-based studies. The Biodynamic vineyard was found to harbor a more diverse fungal community (H = 2.6) than the conventional (H = 2.1) and integrated (H = 1.8) vineyards. The data show that ascomycota are the most abundant phylum in the three vineyards, with Aureobasidium pullulans and its close relative Kabatiella microsticta being the most dominant fungi. This is the first report to reveal a high incidence of K. microsticta in the grape/wine ecosystem. Different common wine yeast species, such as Metschnikowia pulcherrima and Starmerella bacillaris dominated the mycobiome in the three vineyards. The data show that the filamentous fungi are the most abundant community in grape must although they are not regarded as relevant during wine fermentation. Comparison of metagenomic datasets from the three SA vineyards and previously published data from Californian vineyards revealed only 25% of the fungi in the SA dataset was also present in the Californian dataset, with greater variation evident amongst ubiquitous epiphytic fungi.

No MeSH data available.