Limits...
Sequence-based Analysis of the Vitis vinifera L. cv Cabernet Sauvignon Grape Must Mycobiome in Three South African Vineyards Employing Distinct Agronomic Systems.

Setati ME, Jacobson D, Bauer FF - Front Microbiol (2015)

Bottom Line: Data generated in vineyards have furthermore highlighted significant regional differences in vineyard biodiversity, hinting at the possibility that such differences might be responsible for regional differences in wine style and character, a hypothesis referred to as "microbial terroir." The current study further contributes to this body of work by comparing the mycobiome associated with South African (SA) Cabernet Sauvignon grapes in three neighboring vineyards that employ different agronomic approaches, and comparing the outcome with similar data sets from Californian vineyards.The Biodynamic vineyard was found to harbor a more diverse fungal community (H = 2.6) than the conventional (H = 2.1) and integrated (H = 1.8) vineyards.Comparison of metagenomic datasets from the three SA vineyards and previously published data from Californian vineyards revealed only 25% of the fungi in the SA dataset was also present in the Californian dataset, with greater variation evident amongst ubiquitous epiphytic fungi.

View Article: PubMed Central - PubMed

Affiliation: Institute for Wine Biotechnology, Stellenbosch University Stellenbosch, South Africa.

ABSTRACT
Recent microbiomic research of agricultural habitats has highlighted tremendous microbial biodiversity associated with such ecosystems. Data generated in vineyards have furthermore highlighted significant regional differences in vineyard biodiversity, hinting at the possibility that such differences might be responsible for regional differences in wine style and character, a hypothesis referred to as "microbial terroir." The current study further contributes to this body of work by comparing the mycobiome associated with South African (SA) Cabernet Sauvignon grapes in three neighboring vineyards that employ different agronomic approaches, and comparing the outcome with similar data sets from Californian vineyards. The aim of this study was to fully characterize the mycobiomes associated with the grapes from these vineyards. The data revealed approximately 10 times more fungal diversity than what is typically retrieved from culture-based studies. The Biodynamic vineyard was found to harbor a more diverse fungal community (H = 2.6) than the conventional (H = 2.1) and integrated (H = 1.8) vineyards. The data show that ascomycota are the most abundant phylum in the three vineyards, with Aureobasidium pullulans and its close relative Kabatiella microsticta being the most dominant fungi. This is the first report to reveal a high incidence of K. microsticta in the grape/wine ecosystem. Different common wine yeast species, such as Metschnikowia pulcherrima and Starmerella bacillaris dominated the mycobiome in the three vineyards. The data show that the filamentous fungi are the most abundant community in grape must although they are not regarded as relevant during wine fermentation. Comparison of metagenomic datasets from the three SA vineyards and previously published data from Californian vineyards revealed only 25% of the fungi in the SA dataset was also present in the Californian dataset, with greater variation evident amongst ubiquitous epiphytic fungi.

No MeSH data available.


Relative abundance of yeast species frequently encountered in the wine microbial consortium.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4663253&req=5

Figure 5: Relative abundance of yeast species frequently encountered in the wine microbial consortium.

Mentions: Yeasts that constitute the wine microbial consortium have been grouped into previously described categories: (i) oligotrophic oxidative yeasts, e.g., (Cryptococcus sp., A. pullulans, Rhodosporidium sp., Sprobolomyces sp.), (ii) copiotrophic oxidative and weakly fermentative yeasts, e.g., (Candida sp., Pichia sp., Hanseniaspora sp., Metschnikowia pulcherrima, Rhodotorula glutinis, Lachancea thermotolerans), and (iii) copiotrophic strongly fermentative yeasts, e.g., (Torulaspora delbrueckii, Saccharomyces sp., Zygosaccharomyces sp.), (Ocón et al., 2010; Barata et al., 2012). These groups of yeasts accounted for 22, 35, and 12% of the total fungal diversity in the BD, CONV, and IPW, grape must samples, respectively. The oxidative yeasts mainly comprised Sporobolomyces sp., Rhodosporidium sp., and Rhodotorula sp., which were only present at low levels (Figure 5). M. pulcherrima was the most dominant weakly fermentative yeast in the BD and CONV mycobiome, while Starmerella bacillaris (synonym, Candida zemplinina) was the most dominant in the IPW mycobiome. Hanseniaspora uvarum was present in similar amounts in the three mycobiomes. The strongly fermentative yeasts were generally present at very low levels. Amongst them, L. thermotolerans was detected in higher levels in the BD and CONV mycobiome, T. delbrueckii was only detected in the IPW mycobiome while Kazachstania unispora was only detected in the BD mycobiome and Saccharomyces cerevisiae only in the CONV mycobiome (Figure 5). Overall, 11 fermentative yeast species were detected in the BD mycobiome while 8 were detected in the CONV and 9 in the IPW mycobiomes. A comparison of the sequence data with the yeasts isolated from the same must samples shows the most commonly isolated yeasts could be detected by both methods with 11 species shared between them (Figure 6).


Sequence-based Analysis of the Vitis vinifera L. cv Cabernet Sauvignon Grape Must Mycobiome in Three South African Vineyards Employing Distinct Agronomic Systems.

Setati ME, Jacobson D, Bauer FF - Front Microbiol (2015)

Relative abundance of yeast species frequently encountered in the wine microbial consortium.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4663253&req=5

Figure 5: Relative abundance of yeast species frequently encountered in the wine microbial consortium.
Mentions: Yeasts that constitute the wine microbial consortium have been grouped into previously described categories: (i) oligotrophic oxidative yeasts, e.g., (Cryptococcus sp., A. pullulans, Rhodosporidium sp., Sprobolomyces sp.), (ii) copiotrophic oxidative and weakly fermentative yeasts, e.g., (Candida sp., Pichia sp., Hanseniaspora sp., Metschnikowia pulcherrima, Rhodotorula glutinis, Lachancea thermotolerans), and (iii) copiotrophic strongly fermentative yeasts, e.g., (Torulaspora delbrueckii, Saccharomyces sp., Zygosaccharomyces sp.), (Ocón et al., 2010; Barata et al., 2012). These groups of yeasts accounted for 22, 35, and 12% of the total fungal diversity in the BD, CONV, and IPW, grape must samples, respectively. The oxidative yeasts mainly comprised Sporobolomyces sp., Rhodosporidium sp., and Rhodotorula sp., which were only present at low levels (Figure 5). M. pulcherrima was the most dominant weakly fermentative yeast in the BD and CONV mycobiome, while Starmerella bacillaris (synonym, Candida zemplinina) was the most dominant in the IPW mycobiome. Hanseniaspora uvarum was present in similar amounts in the three mycobiomes. The strongly fermentative yeasts were generally present at very low levels. Amongst them, L. thermotolerans was detected in higher levels in the BD and CONV mycobiome, T. delbrueckii was only detected in the IPW mycobiome while Kazachstania unispora was only detected in the BD mycobiome and Saccharomyces cerevisiae only in the CONV mycobiome (Figure 5). Overall, 11 fermentative yeast species were detected in the BD mycobiome while 8 were detected in the CONV and 9 in the IPW mycobiomes. A comparison of the sequence data with the yeasts isolated from the same must samples shows the most commonly isolated yeasts could be detected by both methods with 11 species shared between them (Figure 6).

Bottom Line: Data generated in vineyards have furthermore highlighted significant regional differences in vineyard biodiversity, hinting at the possibility that such differences might be responsible for regional differences in wine style and character, a hypothesis referred to as "microbial terroir." The current study further contributes to this body of work by comparing the mycobiome associated with South African (SA) Cabernet Sauvignon grapes in three neighboring vineyards that employ different agronomic approaches, and comparing the outcome with similar data sets from Californian vineyards.The Biodynamic vineyard was found to harbor a more diverse fungal community (H = 2.6) than the conventional (H = 2.1) and integrated (H = 1.8) vineyards.Comparison of metagenomic datasets from the three SA vineyards and previously published data from Californian vineyards revealed only 25% of the fungi in the SA dataset was also present in the Californian dataset, with greater variation evident amongst ubiquitous epiphytic fungi.

View Article: PubMed Central - PubMed

Affiliation: Institute for Wine Biotechnology, Stellenbosch University Stellenbosch, South Africa.

ABSTRACT
Recent microbiomic research of agricultural habitats has highlighted tremendous microbial biodiversity associated with such ecosystems. Data generated in vineyards have furthermore highlighted significant regional differences in vineyard biodiversity, hinting at the possibility that such differences might be responsible for regional differences in wine style and character, a hypothesis referred to as "microbial terroir." The current study further contributes to this body of work by comparing the mycobiome associated with South African (SA) Cabernet Sauvignon grapes in three neighboring vineyards that employ different agronomic approaches, and comparing the outcome with similar data sets from Californian vineyards. The aim of this study was to fully characterize the mycobiomes associated with the grapes from these vineyards. The data revealed approximately 10 times more fungal diversity than what is typically retrieved from culture-based studies. The Biodynamic vineyard was found to harbor a more diverse fungal community (H = 2.6) than the conventional (H = 2.1) and integrated (H = 1.8) vineyards. The data show that ascomycota are the most abundant phylum in the three vineyards, with Aureobasidium pullulans and its close relative Kabatiella microsticta being the most dominant fungi. This is the first report to reveal a high incidence of K. microsticta in the grape/wine ecosystem. Different common wine yeast species, such as Metschnikowia pulcherrima and Starmerella bacillaris dominated the mycobiome in the three vineyards. The data show that the filamentous fungi are the most abundant community in grape must although they are not regarded as relevant during wine fermentation. Comparison of metagenomic datasets from the three SA vineyards and previously published data from Californian vineyards revealed only 25% of the fungi in the SA dataset was also present in the Californian dataset, with greater variation evident amongst ubiquitous epiphytic fungi.

No MeSH data available.