Limits...
Sequence-based Analysis of the Vitis vinifera L. cv Cabernet Sauvignon Grape Must Mycobiome in Three South African Vineyards Employing Distinct Agronomic Systems.

Setati ME, Jacobson D, Bauer FF - Front Microbiol (2015)

Bottom Line: Data generated in vineyards have furthermore highlighted significant regional differences in vineyard biodiversity, hinting at the possibility that such differences might be responsible for regional differences in wine style and character, a hypothesis referred to as "microbial terroir." The current study further contributes to this body of work by comparing the mycobiome associated with South African (SA) Cabernet Sauvignon grapes in three neighboring vineyards that employ different agronomic approaches, and comparing the outcome with similar data sets from Californian vineyards.The Biodynamic vineyard was found to harbor a more diverse fungal community (H = 2.6) than the conventional (H = 2.1) and integrated (H = 1.8) vineyards.Comparison of metagenomic datasets from the three SA vineyards and previously published data from Californian vineyards revealed only 25% of the fungi in the SA dataset was also present in the Californian dataset, with greater variation evident amongst ubiquitous epiphytic fungi.

View Article: PubMed Central - PubMed

Affiliation: Institute for Wine Biotechnology, Stellenbosch University Stellenbosch, South Africa.

ABSTRACT
Recent microbiomic research of agricultural habitats has highlighted tremendous microbial biodiversity associated with such ecosystems. Data generated in vineyards have furthermore highlighted significant regional differences in vineyard biodiversity, hinting at the possibility that such differences might be responsible for regional differences in wine style and character, a hypothesis referred to as "microbial terroir." The current study further contributes to this body of work by comparing the mycobiome associated with South African (SA) Cabernet Sauvignon grapes in three neighboring vineyards that employ different agronomic approaches, and comparing the outcome with similar data sets from Californian vineyards. The aim of this study was to fully characterize the mycobiomes associated with the grapes from these vineyards. The data revealed approximately 10 times more fungal diversity than what is typically retrieved from culture-based studies. The Biodynamic vineyard was found to harbor a more diverse fungal community (H = 2.6) than the conventional (H = 2.1) and integrated (H = 1.8) vineyards. The data show that ascomycota are the most abundant phylum in the three vineyards, with Aureobasidium pullulans and its close relative Kabatiella microsticta being the most dominant fungi. This is the first report to reveal a high incidence of K. microsticta in the grape/wine ecosystem. Different common wine yeast species, such as Metschnikowia pulcherrima and Starmerella bacillaris dominated the mycobiome in the three vineyards. The data show that the filamentous fungi are the most abundant community in grape must although they are not regarded as relevant during wine fermentation. Comparison of metagenomic datasets from the three SA vineyards and previously published data from Californian vineyards revealed only 25% of the fungi in the SA dataset was also present in the Californian dataset, with greater variation evident amongst ubiquitous epiphytic fungi.

No MeSH data available.


The frequency of occurrence of the abundant fungal taxa as well as major grapevine associated taxa.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4663253&req=5

Figure 4: The frequency of occurrence of the abundant fungal taxa as well as major grapevine associated taxa.

Mentions: Our data revealed two fungi as the most abundant taxa in the must samples from the three vineyards. The yeast-like fungus A. pullulans, which has been reported as both an endophyte and an epiphyte of grapevine, accounted for 13, 25, and 38% of the total population in the BD, CONV, and IPW vineyard, respectively. Similarly, Kabatiella microsticta which is closely related to A. pullulans, accounted for 11, 25, and 38% of the population in the BD, CONV, and IPW vineyard must sample, respectively. Amongst common grapevine endophytes, Botryotinia fuckeliana, Neofusicoccum australe, Cladosporium cladosporioides, Davidiella tassiana, Lewia infectoria, and Mucor sp., were abundant in the BD vineyard must, while the IPW must displayed a more diverse Neofusicoccum community, with N. parvum being the dominant species of this genus. Phoma herbarum and Diplodia seriata were more dominant in the CONV vineyard (Figure 4). Fungi that were abundant amongst typical epiphytic taxa in the three vineyards were Penicillium brevicompactum, P. corylophilum, P. glabrum and Pleospora herbarum. In contrast, Aspergillus tubingensis was only present in BD and IPW, while Botrytis elliptica was present only in BD and CONV. The CONV exhibited a lower diversity of grapevine phytopathogens compared to the BD and IPW. Some of the fungi detected in the mycobiome were not previously known to associate with grapevine such as Ascochyta rabiei, Aschochyta fabae, P. sojicola (synonym, A. sojicola), Lophodermium pinastri, and Sphaeropsis sapinea (synonym, D. pinea). These fungi were, however, present at levels below 1%. Overall, fungi that are potential grapevine pathogens accounted for 50% of the total population in the must from the BD vineyard, while in the CONV and IPW, they accounted for 10 and 8%, respectively.


Sequence-based Analysis of the Vitis vinifera L. cv Cabernet Sauvignon Grape Must Mycobiome in Three South African Vineyards Employing Distinct Agronomic Systems.

Setati ME, Jacobson D, Bauer FF - Front Microbiol (2015)

The frequency of occurrence of the abundant fungal taxa as well as major grapevine associated taxa.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4663253&req=5

Figure 4: The frequency of occurrence of the abundant fungal taxa as well as major grapevine associated taxa.
Mentions: Our data revealed two fungi as the most abundant taxa in the must samples from the three vineyards. The yeast-like fungus A. pullulans, which has been reported as both an endophyte and an epiphyte of grapevine, accounted for 13, 25, and 38% of the total population in the BD, CONV, and IPW vineyard, respectively. Similarly, Kabatiella microsticta which is closely related to A. pullulans, accounted for 11, 25, and 38% of the population in the BD, CONV, and IPW vineyard must sample, respectively. Amongst common grapevine endophytes, Botryotinia fuckeliana, Neofusicoccum australe, Cladosporium cladosporioides, Davidiella tassiana, Lewia infectoria, and Mucor sp., were abundant in the BD vineyard must, while the IPW must displayed a more diverse Neofusicoccum community, with N. parvum being the dominant species of this genus. Phoma herbarum and Diplodia seriata were more dominant in the CONV vineyard (Figure 4). Fungi that were abundant amongst typical epiphytic taxa in the three vineyards were Penicillium brevicompactum, P. corylophilum, P. glabrum and Pleospora herbarum. In contrast, Aspergillus tubingensis was only present in BD and IPW, while Botrytis elliptica was present only in BD and CONV. The CONV exhibited a lower diversity of grapevine phytopathogens compared to the BD and IPW. Some of the fungi detected in the mycobiome were not previously known to associate with grapevine such as Ascochyta rabiei, Aschochyta fabae, P. sojicola (synonym, A. sojicola), Lophodermium pinastri, and Sphaeropsis sapinea (synonym, D. pinea). These fungi were, however, present at levels below 1%. Overall, fungi that are potential grapevine pathogens accounted for 50% of the total population in the must from the BD vineyard, while in the CONV and IPW, they accounted for 10 and 8%, respectively.

Bottom Line: Data generated in vineyards have furthermore highlighted significant regional differences in vineyard biodiversity, hinting at the possibility that such differences might be responsible for regional differences in wine style and character, a hypothesis referred to as "microbial terroir." The current study further contributes to this body of work by comparing the mycobiome associated with South African (SA) Cabernet Sauvignon grapes in three neighboring vineyards that employ different agronomic approaches, and comparing the outcome with similar data sets from Californian vineyards.The Biodynamic vineyard was found to harbor a more diverse fungal community (H = 2.6) than the conventional (H = 2.1) and integrated (H = 1.8) vineyards.Comparison of metagenomic datasets from the three SA vineyards and previously published data from Californian vineyards revealed only 25% of the fungi in the SA dataset was also present in the Californian dataset, with greater variation evident amongst ubiquitous epiphytic fungi.

View Article: PubMed Central - PubMed

Affiliation: Institute for Wine Biotechnology, Stellenbosch University Stellenbosch, South Africa.

ABSTRACT
Recent microbiomic research of agricultural habitats has highlighted tremendous microbial biodiversity associated with such ecosystems. Data generated in vineyards have furthermore highlighted significant regional differences in vineyard biodiversity, hinting at the possibility that such differences might be responsible for regional differences in wine style and character, a hypothesis referred to as "microbial terroir." The current study further contributes to this body of work by comparing the mycobiome associated with South African (SA) Cabernet Sauvignon grapes in three neighboring vineyards that employ different agronomic approaches, and comparing the outcome with similar data sets from Californian vineyards. The aim of this study was to fully characterize the mycobiomes associated with the grapes from these vineyards. The data revealed approximately 10 times more fungal diversity than what is typically retrieved from culture-based studies. The Biodynamic vineyard was found to harbor a more diverse fungal community (H = 2.6) than the conventional (H = 2.1) and integrated (H = 1.8) vineyards. The data show that ascomycota are the most abundant phylum in the three vineyards, with Aureobasidium pullulans and its close relative Kabatiella microsticta being the most dominant fungi. This is the first report to reveal a high incidence of K. microsticta in the grape/wine ecosystem. Different common wine yeast species, such as Metschnikowia pulcherrima and Starmerella bacillaris dominated the mycobiome in the three vineyards. The data show that the filamentous fungi are the most abundant community in grape must although they are not regarded as relevant during wine fermentation. Comparison of metagenomic datasets from the three SA vineyards and previously published data from Californian vineyards revealed only 25% of the fungi in the SA dataset was also present in the Californian dataset, with greater variation evident amongst ubiquitous epiphytic fungi.

No MeSH data available.