Limits...
Virtual Surgical Planning for Orbital Reconstruction.

Susarla SM, Duncan K, Mahoney NR, Merbs SL, Grant MP - Middle East Afr J Ophthalmol (2015 Oct-Dec)

Bottom Line: The advent of computer-assisted technology has revolutionized planning for complex craniofacial operations, including orbital reconstruction.Orbital reconstruction is ideally suited for virtual planning, as it allows the surgeon to assess the bony anatomy and critical neurovascular structures within the orbit, and plan osteotomies, fracture reductions, and orbital implant placement with efficiency and predictability.The surgeon managing orbital pathology and posttraumatic orbital deformities can benefit immensely from utilizing virtual planning for various types of orbital pathology.

View Article: PubMed Central - PubMed

Affiliation: Department of Plastic and Reconstructive Surgery, Johns Hopkins Hospital, Baltimore, MD, USA.

ABSTRACT
The advent of computer-assisted technology has revolutionized planning for complex craniofacial operations, including orbital reconstruction. Orbital reconstruction is ideally suited for virtual planning, as it allows the surgeon to assess the bony anatomy and critical neurovascular structures within the orbit, and plan osteotomies, fracture reductions, and orbital implant placement with efficiency and predictability. In this article, we review the use of virtual surgical planning for orbital decompression, posttraumatic midface reconstruction, reconstruction of a two-wall orbital defect, and reconstruction of a large orbital floor defect with a custom implant. The surgeon managing orbital pathology and posttraumatic orbital deformities can benefit immensely from utilizing virtual planning for various types of orbital pathology.

Show MeSH

Related in: MedlinePlus

Preoperative (left panels) and postoperative (right panels) demonstrating the three-dimensional computer planning for orbital reconstruction with an anatomic implant. The implant is rendered within the software and virtually placed within the defect. This allows the surgeon to position the implant and compute the orbital volume relative to the unaffected side. Intra-operatively, placement of the implant in the appropriate position can be ensured with the use of real-time navigation
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4660529&req=5

Figure 5: Preoperative (left panels) and postoperative (right panels) demonstrating the three-dimensional computer planning for orbital reconstruction with an anatomic implant. The implant is rendered within the software and virtually placed within the defect. This allows the surgeon to position the implant and compute the orbital volume relative to the unaffected side. Intra-operatively, placement of the implant in the appropriate position can be ensured with the use of real-time navigation

Mentions: Injuries to the orbital floor are commonly encountered among surgeons affiliated with trauma centers that treat facial injuries. Orbital floor injuries may occur in isolation or in conjunction with higher level Le Fort injuries, ZMC fractures, naso-orbital-ethmoid fractures, panfacial trauma, and often occur with fractures of the medial orbital wall. The primary goal for orbital reconstruction is to restore the premorbid orbital volume. In this regard, image-guidance technology has been useful for the design of anatomic orbital implants, particularly for two-walled defects involving the floor and medial wall.14151617181924 Custom implants can also be utilized for reconstruction of irregular defects or when there is a significant bone loss. Real-time intra-operative image guidance is a useful to aid in dissection of the orbital floor and medial wall, allowing the surgeon to assess accurately position relative to the superior orbital fissure, optic canal, and the anterior and posterior ethmoidal foramina, thereby decreasing the risk of damage to critical arterial, venous, and nervous structures in these areas. In the first clinical example, virtual planning was used to assess the size and position of the orbital implant required for reconstruction of a posttraumatic defect involving the right medial orbital wall and floor [Figures 4 and 5]. The unaffected orbit was used for comparison to allow for adequate reconstitution of orbital volume. The preoperative enophthalmos was predictably corrected; the postoperative image fusion demonstrates appropriate positioning of the implant along the orbital floor and medial wall, with a stable landing on the posterior ledge. In the second clinical example, a patient with a large, posttraumatic orbital floor defect with significant volume change and marked enophthalmos underwent presurgical planning and design of a custom titanium/polyethylene implant for orbital reconstruction [Figures 6 and 7]. The postoperative result demonstrates marked improvement in globe position, with excellent positioning of the implant along the fracture margins.


Virtual Surgical Planning for Orbital Reconstruction.

Susarla SM, Duncan K, Mahoney NR, Merbs SL, Grant MP - Middle East Afr J Ophthalmol (2015 Oct-Dec)

Preoperative (left panels) and postoperative (right panels) demonstrating the three-dimensional computer planning for orbital reconstruction with an anatomic implant. The implant is rendered within the software and virtually placed within the defect. This allows the surgeon to position the implant and compute the orbital volume relative to the unaffected side. Intra-operatively, placement of the implant in the appropriate position can be ensured with the use of real-time navigation
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4660529&req=5

Figure 5: Preoperative (left panels) and postoperative (right panels) demonstrating the three-dimensional computer planning for orbital reconstruction with an anatomic implant. The implant is rendered within the software and virtually placed within the defect. This allows the surgeon to position the implant and compute the orbital volume relative to the unaffected side. Intra-operatively, placement of the implant in the appropriate position can be ensured with the use of real-time navigation
Mentions: Injuries to the orbital floor are commonly encountered among surgeons affiliated with trauma centers that treat facial injuries. Orbital floor injuries may occur in isolation or in conjunction with higher level Le Fort injuries, ZMC fractures, naso-orbital-ethmoid fractures, panfacial trauma, and often occur with fractures of the medial orbital wall. The primary goal for orbital reconstruction is to restore the premorbid orbital volume. In this regard, image-guidance technology has been useful for the design of anatomic orbital implants, particularly for two-walled defects involving the floor and medial wall.14151617181924 Custom implants can also be utilized for reconstruction of irregular defects or when there is a significant bone loss. Real-time intra-operative image guidance is a useful to aid in dissection of the orbital floor and medial wall, allowing the surgeon to assess accurately position relative to the superior orbital fissure, optic canal, and the anterior and posterior ethmoidal foramina, thereby decreasing the risk of damage to critical arterial, venous, and nervous structures in these areas. In the first clinical example, virtual planning was used to assess the size and position of the orbital implant required for reconstruction of a posttraumatic defect involving the right medial orbital wall and floor [Figures 4 and 5]. The unaffected orbit was used for comparison to allow for adequate reconstitution of orbital volume. The preoperative enophthalmos was predictably corrected; the postoperative image fusion demonstrates appropriate positioning of the implant along the orbital floor and medial wall, with a stable landing on the posterior ledge. In the second clinical example, a patient with a large, posttraumatic orbital floor defect with significant volume change and marked enophthalmos underwent presurgical planning and design of a custom titanium/polyethylene implant for orbital reconstruction [Figures 6 and 7]. The postoperative result demonstrates marked improvement in globe position, with excellent positioning of the implant along the fracture margins.

Bottom Line: The advent of computer-assisted technology has revolutionized planning for complex craniofacial operations, including orbital reconstruction.Orbital reconstruction is ideally suited for virtual planning, as it allows the surgeon to assess the bony anatomy and critical neurovascular structures within the orbit, and plan osteotomies, fracture reductions, and orbital implant placement with efficiency and predictability.The surgeon managing orbital pathology and posttraumatic orbital deformities can benefit immensely from utilizing virtual planning for various types of orbital pathology.

View Article: PubMed Central - PubMed

Affiliation: Department of Plastic and Reconstructive Surgery, Johns Hopkins Hospital, Baltimore, MD, USA.

ABSTRACT
The advent of computer-assisted technology has revolutionized planning for complex craniofacial operations, including orbital reconstruction. Orbital reconstruction is ideally suited for virtual planning, as it allows the surgeon to assess the bony anatomy and critical neurovascular structures within the orbit, and plan osteotomies, fracture reductions, and orbital implant placement with efficiency and predictability. In this article, we review the use of virtual surgical planning for orbital decompression, posttraumatic midface reconstruction, reconstruction of a two-wall orbital defect, and reconstruction of a large orbital floor defect with a custom implant. The surgeon managing orbital pathology and posttraumatic orbital deformities can benefit immensely from utilizing virtual planning for various types of orbital pathology.

Show MeSH
Related in: MedlinePlus