Limits...
Adaptation to acetaminophen exposure elicits major changes in expression and distribution of the hepatic proteome.

Eakins R, Walsh J, Randle L, Jenkins RE, Schuppe-Koistinen I, Rowe C, Starkey Lewis P, Vasieva O, Prats N, Brillant N, Auli M, Bayliss M, Webb S, Rees JA, Kitteringham NR, Goldring CE, Park BK - Sci Rep (2015)

Bottom Line: Acetaminophen overdose is the leading cause of acute liver failure.Genetic ablation of a master regulator of cellular defence, NFE2L2, has little effect, suggesting redundancy in the regulation of adaptation.These data reveal unexpected complexity and dynamic behaviour in the biological response to drug-induced liver injury.

View Article: PubMed Central - PubMed

Affiliation: MRC Centre for Drug Safety Science, University of Liverpool, Liverpool L69 3GE, UK.

ABSTRACT
Acetaminophen overdose is the leading cause of acute liver failure. One dose of 10-15 g causes severe liver damage in humans, whereas repeated exposure to acetaminophen in humans and animal models results in autoprotection. Insight of this process is limited to select proteins implicated in acetaminophen toxicity and cellular defence. Here we investigate hepatic adaptation to acetaminophen toxicity from a whole proteome perspective, using quantitative mass spectrometry. In a rat model, we show the response to acetaminophen involves the expression of 30% of all proteins detected in the liver. Genetic ablation of a master regulator of cellular defence, NFE2L2, has little effect, suggesting redundancy in the regulation of adaptation. We show that adaptation to acetaminophen has a spatial component, involving a shift in regionalisation of CYP2E1, which may prevent toxicity thresholds being reached. These data reveal unexpected complexity and dynamic behaviour in the biological response to drug-induced liver injury.

No MeSH data available.


Related in: MedlinePlus

Autoprotection occurs in the rat and the mouse following repeat acetaminophen exposure.(a) Dosing protocol used in the study. (b) ALT and (c) AST were determined in rat serum (n = 6). Both biomarkers were significantly elevated in the 1500 mg/kg dose group alone (ANOVA with Tukey post-test, ***p < 0.001; 500 mg/kg circle, 1000 mg/kg square, 1500 mg/kg triangle, vehicle control diamond). (d) H&E staining of liver slices for groups of rats at each time-point in 1500 mg/kg group showed progression of injury (n = 4, representative images shown). (e) ALT and (f) AST were determined in mouse serum (n = 6). Both biomarkers were significantly elevated in the 750 mg/kg dose group alone (ANOVA with Tukey post-test, ***p < 0.001; 250 mg/kg circle, 500 mg/kg square, 750 mg/kg triangle, vehicle control diamond). (g) H&E staining of liver slices for groups of mice at each time-point in 750 mg/kg group showed progression of injury (n = 4, representative images shown).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4660393&req=5

f1: Autoprotection occurs in the rat and the mouse following repeat acetaminophen exposure.(a) Dosing protocol used in the study. (b) ALT and (c) AST were determined in rat serum (n = 6). Both biomarkers were significantly elevated in the 1500 mg/kg dose group alone (ANOVA with Tukey post-test, ***p < 0.001; 500 mg/kg circle, 1000 mg/kg square, 1500 mg/kg triangle, vehicle control diamond). (d) H&E staining of liver slices for groups of rats at each time-point in 1500 mg/kg group showed progression of injury (n = 4, representative images shown). (e) ALT and (f) AST were determined in mouse serum (n = 6). Both biomarkers were significantly elevated in the 750 mg/kg dose group alone (ANOVA with Tukey post-test, ***p < 0.001; 250 mg/kg circle, 500 mg/kg square, 750 mg/kg triangle, vehicle control diamond). (g) H&E staining of liver slices for groups of mice at each time-point in 750 mg/kg group showed progression of injury (n = 4, representative images shown).

Mentions: We examined two separate species, rat and mouse, for adaptation to repeat APAP exposure, in order to ensure that this is not a species-selective process and therefore more likely to be relevant to man. The two models were selected because of the similar sensitivity of the rat to human APAP hepatotoxicity91011, and because the mouse is more amenable to genetic modification in order to test the role of specific genes in the process. Rats were dosed orally with 500, 1000 or 1500 mg/kg APAP, and mice with 250, 500 or 750 mg/kg APAP. The doses were chosen in order to monitor autoprotection across a range of sub-toxic, threshold toxic and overtly toxic doses of APAP, to ensure that the drug exposure is relevant to what may occur in humans. Animals were either dosed once at 0 h with sacrifice at 2 h or 24 h, or at 24 h intervals for up to 72 h and sacrificed 24 h after the final dose administered. An outline of the dosing protocol is shown in Fig. 1a. At the 1500 mg/kg dose, at 48 h, rats exhibited rises in circulating liver enzymes, showing a peak serum alanine aminotransferase (ALT) rise 36-fold above vehicle controls, and a 33-fold serum aspartate aminotransferase (AST) rise over control (Fig. 1b,c). Both markers returned to normal levels by 96 h. Histopathology analyses were performed in order to validate the model of liver injury (representative images are shown, Fig. 1d). Although substantial hepatocellular damage was seen at 48 h, this injury had largely resolved by 72 h, despite the animals continuing to receive a daily toxic dose of APAP.


Adaptation to acetaminophen exposure elicits major changes in expression and distribution of the hepatic proteome.

Eakins R, Walsh J, Randle L, Jenkins RE, Schuppe-Koistinen I, Rowe C, Starkey Lewis P, Vasieva O, Prats N, Brillant N, Auli M, Bayliss M, Webb S, Rees JA, Kitteringham NR, Goldring CE, Park BK - Sci Rep (2015)

Autoprotection occurs in the rat and the mouse following repeat acetaminophen exposure.(a) Dosing protocol used in the study. (b) ALT and (c) AST were determined in rat serum (n = 6). Both biomarkers were significantly elevated in the 1500 mg/kg dose group alone (ANOVA with Tukey post-test, ***p < 0.001; 500 mg/kg circle, 1000 mg/kg square, 1500 mg/kg triangle, vehicle control diamond). (d) H&E staining of liver slices for groups of rats at each time-point in 1500 mg/kg group showed progression of injury (n = 4, representative images shown). (e) ALT and (f) AST were determined in mouse serum (n = 6). Both biomarkers were significantly elevated in the 750 mg/kg dose group alone (ANOVA with Tukey post-test, ***p < 0.001; 250 mg/kg circle, 500 mg/kg square, 750 mg/kg triangle, vehicle control diamond). (g) H&E staining of liver slices for groups of mice at each time-point in 750 mg/kg group showed progression of injury (n = 4, representative images shown).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4660393&req=5

f1: Autoprotection occurs in the rat and the mouse following repeat acetaminophen exposure.(a) Dosing protocol used in the study. (b) ALT and (c) AST were determined in rat serum (n = 6). Both biomarkers were significantly elevated in the 1500 mg/kg dose group alone (ANOVA with Tukey post-test, ***p < 0.001; 500 mg/kg circle, 1000 mg/kg square, 1500 mg/kg triangle, vehicle control diamond). (d) H&E staining of liver slices for groups of rats at each time-point in 1500 mg/kg group showed progression of injury (n = 4, representative images shown). (e) ALT and (f) AST were determined in mouse serum (n = 6). Both biomarkers were significantly elevated in the 750 mg/kg dose group alone (ANOVA with Tukey post-test, ***p < 0.001; 250 mg/kg circle, 500 mg/kg square, 750 mg/kg triangle, vehicle control diamond). (g) H&E staining of liver slices for groups of mice at each time-point in 750 mg/kg group showed progression of injury (n = 4, representative images shown).
Mentions: We examined two separate species, rat and mouse, for adaptation to repeat APAP exposure, in order to ensure that this is not a species-selective process and therefore more likely to be relevant to man. The two models were selected because of the similar sensitivity of the rat to human APAP hepatotoxicity91011, and because the mouse is more amenable to genetic modification in order to test the role of specific genes in the process. Rats were dosed orally with 500, 1000 or 1500 mg/kg APAP, and mice with 250, 500 or 750 mg/kg APAP. The doses were chosen in order to monitor autoprotection across a range of sub-toxic, threshold toxic and overtly toxic doses of APAP, to ensure that the drug exposure is relevant to what may occur in humans. Animals were either dosed once at 0 h with sacrifice at 2 h or 24 h, or at 24 h intervals for up to 72 h and sacrificed 24 h after the final dose administered. An outline of the dosing protocol is shown in Fig. 1a. At the 1500 mg/kg dose, at 48 h, rats exhibited rises in circulating liver enzymes, showing a peak serum alanine aminotransferase (ALT) rise 36-fold above vehicle controls, and a 33-fold serum aspartate aminotransferase (AST) rise over control (Fig. 1b,c). Both markers returned to normal levels by 96 h. Histopathology analyses were performed in order to validate the model of liver injury (representative images are shown, Fig. 1d). Although substantial hepatocellular damage was seen at 48 h, this injury had largely resolved by 72 h, despite the animals continuing to receive a daily toxic dose of APAP.

Bottom Line: Acetaminophen overdose is the leading cause of acute liver failure.Genetic ablation of a master regulator of cellular defence, NFE2L2, has little effect, suggesting redundancy in the regulation of adaptation.These data reveal unexpected complexity and dynamic behaviour in the biological response to drug-induced liver injury.

View Article: PubMed Central - PubMed

Affiliation: MRC Centre for Drug Safety Science, University of Liverpool, Liverpool L69 3GE, UK.

ABSTRACT
Acetaminophen overdose is the leading cause of acute liver failure. One dose of 10-15 g causes severe liver damage in humans, whereas repeated exposure to acetaminophen in humans and animal models results in autoprotection. Insight of this process is limited to select proteins implicated in acetaminophen toxicity and cellular defence. Here we investigate hepatic adaptation to acetaminophen toxicity from a whole proteome perspective, using quantitative mass spectrometry. In a rat model, we show the response to acetaminophen involves the expression of 30% of all proteins detected in the liver. Genetic ablation of a master regulator of cellular defence, NFE2L2, has little effect, suggesting redundancy in the regulation of adaptation. We show that adaptation to acetaminophen has a spatial component, involving a shift in regionalisation of CYP2E1, which may prevent toxicity thresholds being reached. These data reveal unexpected complexity and dynamic behaviour in the biological response to drug-induced liver injury.

No MeSH data available.


Related in: MedlinePlus