Limits...
Active porous transition towards spatiotemporal control of molecular flow in a crystal membrane.

Takasaki Y, Takamizawa S - Nat Commun (2015)

Bottom Line: Fluidic control is an essential technology widely found in processes such as flood control in land irrigation and cell metabolism in biological tissues.In any fluidic control system, valve function is the key mechanism used to actively regulate flow and miniaturization of fluidic regulation with precise workability will be particularly vital in the development of microfluidic control.Here we show that the introduction of a stress-induced martensitic transition mechanism converts a microporous molecular crystal into an active fluidic device with spatiotemporal molecular flow controllability through mechanical reorientation of subnanometre channels.

View Article: PubMed Central - PubMed

Affiliation: Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan.

ABSTRACT
Fluidic control is an essential technology widely found in processes such as flood control in land irrigation and cell metabolism in biological tissues. In any fluidic control system, valve function is the key mechanism used to actively regulate flow and miniaturization of fluidic regulation with precise workability will be particularly vital in the development of microfluidic control. The concept of crystal engineering is alternative to processing technology in microstructure construction, as the ultimate microfluidic devices must provide molecular level control. Consequently, microporous crystals can instantly be converted to microfluidic devices if introduced in an active transformability of porous structure and geometry. Here we show that the introduction of a stress-induced martensitic transition mechanism converts a microporous molecular crystal into an active fluidic device with spatiotemporal molecular flow controllability through mechanical reorientation of subnanometre channels.

No MeSH data available.


Related in: MedlinePlus

Gas permeation on a single-crystal membrane.(a) Schematic explanation for single-crystal membrane and orientations of the embedded crystals in a hole of an Al plate. Gas permeability (P) in α (white bars) and in α' phase (black bars) through open surface (b) and closed surface (c) of the crystal at 293 K and Δp of 150 kPa. (Inset figure in b: correlation between open surface area in α' phase (S) and flow rate of H2 gas normalized by crystal thicknesses (FH2).) The permeability of H2 and CO2 in the α' phase become higher than those in the α phase due to the slight change in channel structure caused by molecular distortion (see Supplementary Fig. 7).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4660351&req=5

f3: Gas permeation on a single-crystal membrane.(a) Schematic explanation for single-crystal membrane and orientations of the embedded crystals in a hole of an Al plate. Gas permeability (P) in α (white bars) and in α' phase (black bars) through open surface (b) and closed surface (c) of the crystal at 293 K and Δp of 150 kPa. (Inset figure in b: correlation between open surface area in α' phase (S) and flow rate of H2 gas normalized by crystal thicknesses (FH2).) The permeability of H2 and CO2 in the α' phase become higher than those in the α phase due to the slight change in channel structure caused by molecular distortion (see Supplementary Fig. 7).

Mentions: We confirmed the interchange of gas flow direction and the regulation of flow rate by crystal twinning of 1 by a gas permeation technique on a single-crystal membrane (Fig. 3a). In the α phase crystal where nothing was operated, gases permeate the crystal surfaces of {100}α (indicated as the open surface), whereas they were effectively blocked on {001}α (indicated as the closed surface), agreeing with the previous report10 (white bars in Fig. 3b,c). In the mechanically generated α′ phase within the α phase crystal, the permeation/barrier directions were interchanged by the reorientation of channel directions estimated in crystallography discussed in Fig. 2b (black bars in Fig. 3b,c). In addition, the extension of the open surface area by widening the α′ domain linearly increased the flow rate of H2 gas (inset of Fig. 3b), which showed that the number of the channels precisely determines the flow rate due to the identical microflux through the uniform subnanometre channels. Therefore, a finer flux control in molecular scale can be realized by minimizing the α′ domain to a nanometre scale or by using additive slits or masks on a crystal if considering the practical limit of the minimum size of a well-controlled domain (5 μm in width in the current crystal membrane).


Active porous transition towards spatiotemporal control of molecular flow in a crystal membrane.

Takasaki Y, Takamizawa S - Nat Commun (2015)

Gas permeation on a single-crystal membrane.(a) Schematic explanation for single-crystal membrane and orientations of the embedded crystals in a hole of an Al plate. Gas permeability (P) in α (white bars) and in α' phase (black bars) through open surface (b) and closed surface (c) of the crystal at 293 K and Δp of 150 kPa. (Inset figure in b: correlation between open surface area in α' phase (S) and flow rate of H2 gas normalized by crystal thicknesses (FH2).) The permeability of H2 and CO2 in the α' phase become higher than those in the α phase due to the slight change in channel structure caused by molecular distortion (see Supplementary Fig. 7).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4660351&req=5

f3: Gas permeation on a single-crystal membrane.(a) Schematic explanation for single-crystal membrane and orientations of the embedded crystals in a hole of an Al plate. Gas permeability (P) in α (white bars) and in α' phase (black bars) through open surface (b) and closed surface (c) of the crystal at 293 K and Δp of 150 kPa. (Inset figure in b: correlation between open surface area in α' phase (S) and flow rate of H2 gas normalized by crystal thicknesses (FH2).) The permeability of H2 and CO2 in the α' phase become higher than those in the α phase due to the slight change in channel structure caused by molecular distortion (see Supplementary Fig. 7).
Mentions: We confirmed the interchange of gas flow direction and the regulation of flow rate by crystal twinning of 1 by a gas permeation technique on a single-crystal membrane (Fig. 3a). In the α phase crystal where nothing was operated, gases permeate the crystal surfaces of {100}α (indicated as the open surface), whereas they were effectively blocked on {001}α (indicated as the closed surface), agreeing with the previous report10 (white bars in Fig. 3b,c). In the mechanically generated α′ phase within the α phase crystal, the permeation/barrier directions were interchanged by the reorientation of channel directions estimated in crystallography discussed in Fig. 2b (black bars in Fig. 3b,c). In addition, the extension of the open surface area by widening the α′ domain linearly increased the flow rate of H2 gas (inset of Fig. 3b), which showed that the number of the channels precisely determines the flow rate due to the identical microflux through the uniform subnanometre channels. Therefore, a finer flux control in molecular scale can be realized by minimizing the α′ domain to a nanometre scale or by using additive slits or masks on a crystal if considering the practical limit of the minimum size of a well-controlled domain (5 μm in width in the current crystal membrane).

Bottom Line: Fluidic control is an essential technology widely found in processes such as flood control in land irrigation and cell metabolism in biological tissues.In any fluidic control system, valve function is the key mechanism used to actively regulate flow and miniaturization of fluidic regulation with precise workability will be particularly vital in the development of microfluidic control.Here we show that the introduction of a stress-induced martensitic transition mechanism converts a microporous molecular crystal into an active fluidic device with spatiotemporal molecular flow controllability through mechanical reorientation of subnanometre channels.

View Article: PubMed Central - PubMed

Affiliation: Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan.

ABSTRACT
Fluidic control is an essential technology widely found in processes such as flood control in land irrigation and cell metabolism in biological tissues. In any fluidic control system, valve function is the key mechanism used to actively regulate flow and miniaturization of fluidic regulation with precise workability will be particularly vital in the development of microfluidic control. The concept of crystal engineering is alternative to processing technology in microstructure construction, as the ultimate microfluidic devices must provide molecular level control. Consequently, microporous crystals can instantly be converted to microfluidic devices if introduced in an active transformability of porous structure and geometry. Here we show that the introduction of a stress-induced martensitic transition mechanism converts a microporous molecular crystal into an active fluidic device with spatiotemporal molecular flow controllability through mechanical reorientation of subnanometre channels.

No MeSH data available.


Related in: MedlinePlus