Limits...
From Soybean residue to advanced supercapacitors.

Ferrero GA, Fuertes AB, Sevilla M - Sci Rep (2015)

Bottom Line: Supercapacitor technology is an extremely timely area of research with fierce international competition to develop cost-effective, environmentally friendlier EC electrode materials that have real world application.Interestingly, when Li2SO4 is used, the voltage window is extended up to 1.7 V (in contrast to 1.1 V in H2SO4).Thus, the amount of energy stored is increased by 50% compared to H2SO4 electrolyte, enabling this environmentally sound Li2SO4-based supercapacitor to deliver ~12 Wh kg(-1) at a high power density of ~2 kW kg(-1).

View Article: PubMed Central - PubMed

Affiliation: Instituto Nacional del Carbón (CSIC), P.O. Box 73, Oviedo 33080, Spain.

ABSTRACT
Supercapacitor technology is an extremely timely area of research with fierce international competition to develop cost-effective, environmentally friendlier EC electrode materials that have real world application. Herein, nitrogen-doped carbons with large specific surface area, optimized micropore structure and surface chemistry have been prepared by means of an environmentally sound hydrothermal carbonization process using defatted soybean (i.e., Soybean meal), a widely available and cost-effective protein-rich biomass, as precursor followed by a chemical activation step. When tested as supercapacitor electrodes in aqueous electrolytes (i.e. H2SO4 and Li2SO4), they demonstrate excellent capacitive performance and robustness, with high values of specific capacitance in both gravimetric (250-260 and 176 F g(-1) in H2SO4 and Li2SO4 respectively) and volumetric (150-210 and 102 F cm(-3) in H2SO4 and Li2SO4 respectively) units, and remarkable rate capability (>60% capacitance retention at 20 A g(-1) in both media). Interestingly, when Li2SO4 is used, the voltage window is extended up to 1.7 V (in contrast to 1.1 V in H2SO4). Thus, the amount of energy stored is increased by 50% compared to H2SO4 electrolyte, enabling this environmentally sound Li2SO4-based supercapacitor to deliver ~12 Wh kg(-1) at a high power density of ~2 kW kg(-1).

No MeSH data available.


SEM images of the (a) dSB/glucose-derived hydrochar, (b) porous carbon AS-700, and (c) nitrogen sorption isotherms and (d) pore size distributions for the AS-600, AS-650, AS-700 and AS-800 porous carbon samples.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4645100&req=5

f2: SEM images of the (a) dSB/glucose-derived hydrochar, (b) porous carbon AS-700, and (c) nitrogen sorption isotherms and (d) pore size distributions for the AS-600, AS-650, AS-700 and AS-800 porous carbon samples.

Mentions: The morphology of the hydrochar and activated carbon materials was investigated by means of scanning electron microscopy (SEM). As can be seen in Fig. 1a, the hydrochar sample contains numerous sphere-like microparticles on the surface of larger particles, which are generated as a consequence of the hydrothermal carbonization of glucose and the saccharides present in the defatted soybean residue. On the other hand, the activated samples are made up of particles that have an irregular morphology and large conchoidal cavities, like other hydrochar-derived activated carbons (see Fig. 2b)242526. Even though the material is composed of relatively large particles (5–30 μm, see Supplementary Fig. S2a online), such large conchoidal cavities could ensure that the species gain fast access to the inner pore structure.


From Soybean residue to advanced supercapacitors.

Ferrero GA, Fuertes AB, Sevilla M - Sci Rep (2015)

SEM images of the (a) dSB/glucose-derived hydrochar, (b) porous carbon AS-700, and (c) nitrogen sorption isotherms and (d) pore size distributions for the AS-600, AS-650, AS-700 and AS-800 porous carbon samples.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4645100&req=5

f2: SEM images of the (a) dSB/glucose-derived hydrochar, (b) porous carbon AS-700, and (c) nitrogen sorption isotherms and (d) pore size distributions for the AS-600, AS-650, AS-700 and AS-800 porous carbon samples.
Mentions: The morphology of the hydrochar and activated carbon materials was investigated by means of scanning electron microscopy (SEM). As can be seen in Fig. 1a, the hydrochar sample contains numerous sphere-like microparticles on the surface of larger particles, which are generated as a consequence of the hydrothermal carbonization of glucose and the saccharides present in the defatted soybean residue. On the other hand, the activated samples are made up of particles that have an irregular morphology and large conchoidal cavities, like other hydrochar-derived activated carbons (see Fig. 2b)242526. Even though the material is composed of relatively large particles (5–30 μm, see Supplementary Fig. S2a online), such large conchoidal cavities could ensure that the species gain fast access to the inner pore structure.

Bottom Line: Supercapacitor technology is an extremely timely area of research with fierce international competition to develop cost-effective, environmentally friendlier EC electrode materials that have real world application.Interestingly, when Li2SO4 is used, the voltage window is extended up to 1.7 V (in contrast to 1.1 V in H2SO4).Thus, the amount of energy stored is increased by 50% compared to H2SO4 electrolyte, enabling this environmentally sound Li2SO4-based supercapacitor to deliver ~12 Wh kg(-1) at a high power density of ~2 kW kg(-1).

View Article: PubMed Central - PubMed

Affiliation: Instituto Nacional del Carbón (CSIC), P.O. Box 73, Oviedo 33080, Spain.

ABSTRACT
Supercapacitor technology is an extremely timely area of research with fierce international competition to develop cost-effective, environmentally friendlier EC electrode materials that have real world application. Herein, nitrogen-doped carbons with large specific surface area, optimized micropore structure and surface chemistry have been prepared by means of an environmentally sound hydrothermal carbonization process using defatted soybean (i.e., Soybean meal), a widely available and cost-effective protein-rich biomass, as precursor followed by a chemical activation step. When tested as supercapacitor electrodes in aqueous electrolytes (i.e. H2SO4 and Li2SO4), they demonstrate excellent capacitive performance and robustness, with high values of specific capacitance in both gravimetric (250-260 and 176 F g(-1) in H2SO4 and Li2SO4 respectively) and volumetric (150-210 and 102 F cm(-3) in H2SO4 and Li2SO4 respectively) units, and remarkable rate capability (>60% capacitance retention at 20 A g(-1) in both media). Interestingly, when Li2SO4 is used, the voltage window is extended up to 1.7 V (in contrast to 1.1 V in H2SO4). Thus, the amount of energy stored is increased by 50% compared to H2SO4 electrolyte, enabling this environmentally sound Li2SO4-based supercapacitor to deliver ~12 Wh kg(-1) at a high power density of ~2 kW kg(-1).

No MeSH data available.