Limits...
Moringa oleifera Flower Extract Suppresses the Activation of Inflammatory Mediators in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages via NF-κB Pathway.

Tan WS, Arulselvan P, Karthivashan G, Fakurazi S - Mediators Inflamm. (2015)

Bottom Line: However, it significantly increased the production of IL-10 and IκB-α (inhibitor of κB) in a concentration dependent manner (100 μg/mL and 200 μg/mL).Conclusion.These results suggest that 80% hydroethanolic extract of M. oleifera flower has anti-inflammatory action related to its inhibition of NO, PGE2, proinflammatory cytokines, and inflammatory mediator's production in LPS-stimulated macrophages through preventing degradation of IκB-α in NF-κB signaling pathway.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.

ABSTRACT
Aim of Study. Moringa oleifera Lam. (M. oleifera) possess highest concentration of antioxidant bioactive compounds and is anticipated to be used as an alternative medicine for inflammation. In the present study, we investigated the anti-inflammatory activity of 80% hydroethanolic extract of M. oleifera flower on proinflammatory mediators and cytokines produced in lipopolysaccharide- (LPS-) induced RAW 264.7 macrophages. Materials and Methods. Cell cytotoxicity was conducted by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Nitric oxide (NO) production was quantified through Griess reaction while proinflammatory cytokines and other key inflammatory markers were assessed through enzyme-linked immunosorbent assay (ELISA) and immunoblotting. Results. Hydroethanolic extract of M. oleifera flower significantly suppressed the secretion and expression of NO, prostaglandin E2 (PGE2), interleukin- (IL-) 6, IL-1β, tumor necrosis factor-alpha (TNF-α), nuclear factor-kappa B (NF-κB), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2). However, it significantly increased the production of IL-10 and IκB-α (inhibitor of κB) in a concentration dependent manner (100 μg/mL and 200 μg/mL). Conclusion. These results suggest that 80% hydroethanolic extract of M. oleifera flower has anti-inflammatory action related to its inhibition of NO, PGE2, proinflammatory cytokines, and inflammatory mediator's production in LPS-stimulated macrophages through preventing degradation of IκB-α in NF-κB signaling pathway.

No MeSH data available.


Related in: MedlinePlus

Mechanism blockade of NF-κB activation in RAW 264.7 macrophages by 80% hydroethanolic M. oleifera flower extract.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4644847&req=5

fig7: Mechanism blockade of NF-κB activation in RAW 264.7 macrophages by 80% hydroethanolic M. oleifera flower extract.

Mentions: NF-κB is critical regulator mediator for iNOS, COX-2 transcription, and the production cytokines in LPS-induced macrophages. Inactive NF-κB is located in cytoplasm as part of complex but activated NF-κB upon LPS translocated to nucleus and bonded to its cognate DNA-binding sites to stimulate several intracellular signaling pathways [36]. This increases the expression of iNOS and COX-2 during inflammation [45]. Overexpressed iNOS in macrophages caused overproduced NO which induced inflammatory response. High expression of COX-2, an inducible enzyme which induced excessive production of PGE2, which act as proinflammatory mediators in inflammatory state [46]. The production of cytokines is regulated by NF-κB expression through IκB-α phosphorylation by IκB kinase complex (IKK) [10, 47, 48]. Immunoblot results have (Figure 6) shown that LPS induces the degradation of IκB-α expression by IKK complex, while M. oleifera flower extract and positive control treatment showed significantly enhanced expression of IκB-α. Hydroethanolic M. oleifera flower extract and dexamethasone have exhibited anti-inflammatory properties in a concentration dependent fashion in suppressing LPS-induced production of proinflammatory mediators including IL-6, IL-1β, and TNF-α, as well as NF-κB, iNOS, and COX-2 expression. However, they enhanced production of IL-10 and expression of IκB-α. These results have proven that hydroethanolic M. oleifera flower extract exerted its activity on upstream signaling pathway. M. oleifera flower extract might inhibit NF-κB activation activity by blocking the degradation of IκB-α and retained NF-κB in cytoplasm from further activation. Proinflammatory genes expressions from downstream targets of NF-κB have been downregulated [8]. In this study, blockade of NF-κB activation by inhibiting LPS-induced IκB-α phosphorylation is an effective molecular target to prevent elevation of proinflammatory mediators as the mechanism shown in Figure 7.


Moringa oleifera Flower Extract Suppresses the Activation of Inflammatory Mediators in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages via NF-κB Pathway.

Tan WS, Arulselvan P, Karthivashan G, Fakurazi S - Mediators Inflamm. (2015)

Mechanism blockade of NF-κB activation in RAW 264.7 macrophages by 80% hydroethanolic M. oleifera flower extract.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4644847&req=5

fig7: Mechanism blockade of NF-κB activation in RAW 264.7 macrophages by 80% hydroethanolic M. oleifera flower extract.
Mentions: NF-κB is critical regulator mediator for iNOS, COX-2 transcription, and the production cytokines in LPS-induced macrophages. Inactive NF-κB is located in cytoplasm as part of complex but activated NF-κB upon LPS translocated to nucleus and bonded to its cognate DNA-binding sites to stimulate several intracellular signaling pathways [36]. This increases the expression of iNOS and COX-2 during inflammation [45]. Overexpressed iNOS in macrophages caused overproduced NO which induced inflammatory response. High expression of COX-2, an inducible enzyme which induced excessive production of PGE2, which act as proinflammatory mediators in inflammatory state [46]. The production of cytokines is regulated by NF-κB expression through IκB-α phosphorylation by IκB kinase complex (IKK) [10, 47, 48]. Immunoblot results have (Figure 6) shown that LPS induces the degradation of IκB-α expression by IKK complex, while M. oleifera flower extract and positive control treatment showed significantly enhanced expression of IκB-α. Hydroethanolic M. oleifera flower extract and dexamethasone have exhibited anti-inflammatory properties in a concentration dependent fashion in suppressing LPS-induced production of proinflammatory mediators including IL-6, IL-1β, and TNF-α, as well as NF-κB, iNOS, and COX-2 expression. However, they enhanced production of IL-10 and expression of IκB-α. These results have proven that hydroethanolic M. oleifera flower extract exerted its activity on upstream signaling pathway. M. oleifera flower extract might inhibit NF-κB activation activity by blocking the degradation of IκB-α and retained NF-κB in cytoplasm from further activation. Proinflammatory genes expressions from downstream targets of NF-κB have been downregulated [8]. In this study, blockade of NF-κB activation by inhibiting LPS-induced IκB-α phosphorylation is an effective molecular target to prevent elevation of proinflammatory mediators as the mechanism shown in Figure 7.

Bottom Line: However, it significantly increased the production of IL-10 and IκB-α (inhibitor of κB) in a concentration dependent manner (100 μg/mL and 200 μg/mL).Conclusion.These results suggest that 80% hydroethanolic extract of M. oleifera flower has anti-inflammatory action related to its inhibition of NO, PGE2, proinflammatory cytokines, and inflammatory mediator's production in LPS-stimulated macrophages through preventing degradation of IκB-α in NF-κB signaling pathway.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.

ABSTRACT
Aim of Study. Moringa oleifera Lam. (M. oleifera) possess highest concentration of antioxidant bioactive compounds and is anticipated to be used as an alternative medicine for inflammation. In the present study, we investigated the anti-inflammatory activity of 80% hydroethanolic extract of M. oleifera flower on proinflammatory mediators and cytokines produced in lipopolysaccharide- (LPS-) induced RAW 264.7 macrophages. Materials and Methods. Cell cytotoxicity was conducted by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Nitric oxide (NO) production was quantified through Griess reaction while proinflammatory cytokines and other key inflammatory markers were assessed through enzyme-linked immunosorbent assay (ELISA) and immunoblotting. Results. Hydroethanolic extract of M. oleifera flower significantly suppressed the secretion and expression of NO, prostaglandin E2 (PGE2), interleukin- (IL-) 6, IL-1β, tumor necrosis factor-alpha (TNF-α), nuclear factor-kappa B (NF-κB), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2). However, it significantly increased the production of IL-10 and IκB-α (inhibitor of κB) in a concentration dependent manner (100 μg/mL and 200 μg/mL). Conclusion. These results suggest that 80% hydroethanolic extract of M. oleifera flower has anti-inflammatory action related to its inhibition of NO, PGE2, proinflammatory cytokines, and inflammatory mediator's production in LPS-stimulated macrophages through preventing degradation of IκB-α in NF-κB signaling pathway.

No MeSH data available.


Related in: MedlinePlus