Limits...
Molecular Breeding Strategy and Challenges Towards Improvement of Blast Disease Resistance in Rice Crop.

Ashkani S, Rafii MY, Shabanimofrad M, Miah G, Sahebi M, Azizi P, Tanweer FA, Akhtar MS, Nasehi A - Front Plant Sci (2015)

Bottom Line: There is a need to develop strategies providing long-lasting disease resistance against a broad spectrum of pathogens, giving protection for a long time over a broad geographic area, promising for sustainable rice production in the future.So far, molecular breeding approaches involving DNA markers, such as QTL mapping, marker-aided selection, gene pyramiding, allele mining and genetic transformation have been used to develop new resistant rice cultivars.The paper briefly reviewed the progress of studies on this aspect to provide the interest information for rice disease resistance breeding.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Food Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia Serdang, Malaysia ; Department of Agronomy and Plant Breeding, Yadegar -e- Imam Khomeini RAH Shahre-Rey Branch, Islamic Azad University Tehran, Iran.

ABSTRACT
Rice is a staple and most important security food crop consumed by almost half of the world's population. More rice production is needed due to the rapid population growth in the world. Rice blast caused by the fungus, Magnaporthe oryzae is one of the most destructive diseases of this crop in different part of the world. Breakdown of blast resistance is the major cause of yield instability in several rice growing areas. There is a need to develop strategies providing long-lasting disease resistance against a broad spectrum of pathogens, giving protection for a long time over a broad geographic area, promising for sustainable rice production in the future. So far, molecular breeding approaches involving DNA markers, such as QTL mapping, marker-aided selection, gene pyramiding, allele mining and genetic transformation have been used to develop new resistant rice cultivars. Such techniques now are used as a low-cost, high-throughput alternative to conventional methods allowing rapid introgression of disease resistance genes into susceptible varieties as well as the incorporation of multiple genes into individual lines for more durable blast resistance. The paper briefly reviewed the progress of studies on this aspect to provide the interest information for rice disease resistance breeding. This review includes examples of how advanced molecular method have been used in breeding programs for improving blast resistance. New information and knowledge gained from previous research on the recent strategy and challenges towards improvement of blast disease such as pyramiding disease resistance gene for creating new rice varieties with high resistance against multiple diseases will undoubtedly provide new insights into the rice disease control.

No MeSH data available.


Related in: MedlinePlus

Method for biotic and abiotic resistance breeding in crops.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4644793&req=5

Figure 1: Method for biotic and abiotic resistance breeding in crops.

Mentions: Biotic and abiotic stresses cause significant yield losses in food crop production and Improvement in stress tolerance of plant is a major breeding goal. Nowadays, different methods are being used to improve stress tolerance in plants (Figure 1). Diseases are among the most important limiting factors that affect rice production. More than 70 diseases caused by fungi, bacteria, viruses or nematodes have been reported on rice (Zhang et al., 2009). Rice blast (Magnaporthe oryzae) is the most devastating disease of rice because of its wide distribution and its destructiveness under conductive conditions (Skamnioti and Gurr, 2009; Helliwell and Yang, 2013; Helliwell et al., 2013). Among the biotic stresses blast disease is most important. Since there have been many blast disease outbreaks in rice, efforts have been made to develop new cultivars resistant to the blast disease. Earlier studies on the variability of this fungus relied mainly on the phenotypic characters and virulence test using a set of host differentials. These studies were only focused on screening and selection of rice varieties or advanced lines toward selected local blast pathotypes. Most of these phenotypic traits are highly variable as this pathogen is genetically unstable. Such kinds of studies are labor-intensive and time-consuming, require large greenhouse space and often lead to ambiguous results. Furthermore, they are influenced by environmental conditions, inoculation techniques and human errors during scoring (Shivayogi et al., 2002). Now strategic research concentrates on filling the gaps in the existing knowledge of biotic stresses on rice, especially improving molecular genetics of blast disease, with a view to develop an integrated management program for blast resistance. Over the past decades, we have seen the successful use of advanced molecular and genomic tools such as molecular markers, expressed sequence tags (ESTs), microarrays, and genetic transformations to explore the genetic basis of stress tolerance and eventually to develop crop cultivars improved for stress tolerance. The recent developments in DNA marker technology have helped to develop the concepts of QTLs mapping, marker-aided selection (MAS) and genetic transformation to produce plants of superior quality. In addition, molecular markers can be used for assessing genetic diversity, fingerprinting genotypes, separating hybrids from selfed progeny, and other uses. The actual identification of candidate DNA markers linked to resistance genes using fine mapping may well allow rice breeders to efficiently transfer these genes from donor cultivars into new, elite rice cultivars using marker-assisted selection (MAS). There is also a need to connect knowledge about genes and gene function to create new productive varieties that are a necessary element of a sustainable food supply for the future (Ashkani et al., 2015). Here we highlight a set of molecular tools that are currently being used to study the rice blast fungus. The information generated on recent methodology will help breeders to expedite breeding research in rice crops and explore a promising new concept which utilizes such molecular data to breed for durable resistance to rice blast.


Molecular Breeding Strategy and Challenges Towards Improvement of Blast Disease Resistance in Rice Crop.

Ashkani S, Rafii MY, Shabanimofrad M, Miah G, Sahebi M, Azizi P, Tanweer FA, Akhtar MS, Nasehi A - Front Plant Sci (2015)

Method for biotic and abiotic resistance breeding in crops.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4644793&req=5

Figure 1: Method for biotic and abiotic resistance breeding in crops.
Mentions: Biotic and abiotic stresses cause significant yield losses in food crop production and Improvement in stress tolerance of plant is a major breeding goal. Nowadays, different methods are being used to improve stress tolerance in plants (Figure 1). Diseases are among the most important limiting factors that affect rice production. More than 70 diseases caused by fungi, bacteria, viruses or nematodes have been reported on rice (Zhang et al., 2009). Rice blast (Magnaporthe oryzae) is the most devastating disease of rice because of its wide distribution and its destructiveness under conductive conditions (Skamnioti and Gurr, 2009; Helliwell and Yang, 2013; Helliwell et al., 2013). Among the biotic stresses blast disease is most important. Since there have been many blast disease outbreaks in rice, efforts have been made to develop new cultivars resistant to the blast disease. Earlier studies on the variability of this fungus relied mainly on the phenotypic characters and virulence test using a set of host differentials. These studies were only focused on screening and selection of rice varieties or advanced lines toward selected local blast pathotypes. Most of these phenotypic traits are highly variable as this pathogen is genetically unstable. Such kinds of studies are labor-intensive and time-consuming, require large greenhouse space and often lead to ambiguous results. Furthermore, they are influenced by environmental conditions, inoculation techniques and human errors during scoring (Shivayogi et al., 2002). Now strategic research concentrates on filling the gaps in the existing knowledge of biotic stresses on rice, especially improving molecular genetics of blast disease, with a view to develop an integrated management program for blast resistance. Over the past decades, we have seen the successful use of advanced molecular and genomic tools such as molecular markers, expressed sequence tags (ESTs), microarrays, and genetic transformations to explore the genetic basis of stress tolerance and eventually to develop crop cultivars improved for stress tolerance. The recent developments in DNA marker technology have helped to develop the concepts of QTLs mapping, marker-aided selection (MAS) and genetic transformation to produce plants of superior quality. In addition, molecular markers can be used for assessing genetic diversity, fingerprinting genotypes, separating hybrids from selfed progeny, and other uses. The actual identification of candidate DNA markers linked to resistance genes using fine mapping may well allow rice breeders to efficiently transfer these genes from donor cultivars into new, elite rice cultivars using marker-assisted selection (MAS). There is also a need to connect knowledge about genes and gene function to create new productive varieties that are a necessary element of a sustainable food supply for the future (Ashkani et al., 2015). Here we highlight a set of molecular tools that are currently being used to study the rice blast fungus. The information generated on recent methodology will help breeders to expedite breeding research in rice crops and explore a promising new concept which utilizes such molecular data to breed for durable resistance to rice blast.

Bottom Line: There is a need to develop strategies providing long-lasting disease resistance against a broad spectrum of pathogens, giving protection for a long time over a broad geographic area, promising for sustainable rice production in the future.So far, molecular breeding approaches involving DNA markers, such as QTL mapping, marker-aided selection, gene pyramiding, allele mining and genetic transformation have been used to develop new resistant rice cultivars.The paper briefly reviewed the progress of studies on this aspect to provide the interest information for rice disease resistance breeding.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Food Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia Serdang, Malaysia ; Department of Agronomy and Plant Breeding, Yadegar -e- Imam Khomeini RAH Shahre-Rey Branch, Islamic Azad University Tehran, Iran.

ABSTRACT
Rice is a staple and most important security food crop consumed by almost half of the world's population. More rice production is needed due to the rapid population growth in the world. Rice blast caused by the fungus, Magnaporthe oryzae is one of the most destructive diseases of this crop in different part of the world. Breakdown of blast resistance is the major cause of yield instability in several rice growing areas. There is a need to develop strategies providing long-lasting disease resistance against a broad spectrum of pathogens, giving protection for a long time over a broad geographic area, promising for sustainable rice production in the future. So far, molecular breeding approaches involving DNA markers, such as QTL mapping, marker-aided selection, gene pyramiding, allele mining and genetic transformation have been used to develop new resistant rice cultivars. Such techniques now are used as a low-cost, high-throughput alternative to conventional methods allowing rapid introgression of disease resistance genes into susceptible varieties as well as the incorporation of multiple genes into individual lines for more durable blast resistance. The paper briefly reviewed the progress of studies on this aspect to provide the interest information for rice disease resistance breeding. This review includes examples of how advanced molecular method have been used in breeding programs for improving blast resistance. New information and knowledge gained from previous research on the recent strategy and challenges towards improvement of blast disease such as pyramiding disease resistance gene for creating new rice varieties with high resistance against multiple diseases will undoubtedly provide new insights into the rice disease control.

No MeSH data available.


Related in: MedlinePlus