Limits...
Lost in translation: pluripotent stem cell-derived hematopoiesis.

Ackermann M, Liebhaber S, Klusmann JH, Lachmann N - EMBO Mol Med (2015)

Bottom Line: In addition, we would like to shed light on emerging factors controlling primitive and definitive hematopoietic development and to highlight recent approaches to improve the differentiation potential of PSC sources toward hematopoietic stem/progenitor cells.While the generation of fully defined hematopoietic stem cells from PSCs remains challenging in vitro, we here underline the instructive role of cell extrinsic factors such as cytokines for the generation of PSC-derived mature hematopoietic cells.Thus, we have comprehensively examined the role of cytokines for the derivation of mature hematopoietic cell types such as macrophages, granulocytes, megakaryocytes, erythrocytes, dendritic cells, and cells of the B- and T-cell lineage.

View Article: PubMed Central - PubMed

Affiliation: RG Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence Hannover Medical School, Hannover, Germany Institute of Experimental Hematology Hannover Medical School, Hannover, Germany.

Show MeSH
Primitive and definitive hematopoietic development in vitroHematopoietic specification from pluripotent stem cells in vitro is primarily driven by the formation of mesodermal cells, which later gives rise to different hematopoietic cells by a hemato-endothelial progenitor. At this stage, hematopoietic differentiation in vitro can in principle generate cells of primitive or definitive hematopoiesis, which can be differentiated using specific experimental setups. Hematopoietic progenitor cells, which emerge during the differentiation process and are able to (i) give rise to erythroid cells that express adult hemoglobin (HbA or β-hemoglobin), (ii) give rise to T-lymphoid cells when cultured on NOTCH-delta ligand 1/4 (DL1 or DL4)-expressing OP9 cells, or (iii) multilineage reconstitute immunocompromised mice, are defined as cells derived from a definitive hematopoietic program. In contrast, hematopoietic progenitor cells that are not capable of fulfilling these criteria are defined as cells derived from primitive hematopoiesis. Although both programs can occur in vitro, defined signaling pathways such as Wnt, Activin/Nodal, or extracellular stimuli such as tenascin C have been proven to direct the hematopoietic program toward definitive or primitive hematopoiesis.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4644373&req=5

fig02: Primitive and definitive hematopoietic development in vitroHematopoietic specification from pluripotent stem cells in vitro is primarily driven by the formation of mesodermal cells, which later gives rise to different hematopoietic cells by a hemato-endothelial progenitor. At this stage, hematopoietic differentiation in vitro can in principle generate cells of primitive or definitive hematopoiesis, which can be differentiated using specific experimental setups. Hematopoietic progenitor cells, which emerge during the differentiation process and are able to (i) give rise to erythroid cells that express adult hemoglobin (HbA or β-hemoglobin), (ii) give rise to T-lymphoid cells when cultured on NOTCH-delta ligand 1/4 (DL1 or DL4)-expressing OP9 cells, or (iii) multilineage reconstitute immunocompromised mice, are defined as cells derived from a definitive hematopoietic program. In contrast, hematopoietic progenitor cells that are not capable of fulfilling these criteria are defined as cells derived from primitive hematopoiesis. Although both programs can occur in vitro, defined signaling pathways such as Wnt, Activin/Nodal, or extracellular stimuli such as tenascin C have been proven to direct the hematopoietic program toward definitive or primitive hematopoiesis.

Mentions: During mammalian embryonic development, the emergence of definitive hematopoietic “stem” cells characterized by their potential to generate B- and T-lymphoid cells as well as to repopulate an irradiated host is preceded by a wave of primitive hematopoiesis (Yoder, 2014). In this line, inducing a definitive hematopoietic program during the in vitro differentiation process of PSCs may resemble the prerequisite to generate HSCs with long-term engraftment potential. Probably, this switch from the primitive to definitive hematopoiesis represents the bottleneck that is hindering the efficient long-term engraftment potential of PSC-derived hematopoietic stem/progenitor cells (HSPCs) so far (Szabo et al, 2010; Ran et al, 2013) (see also Fig2).


Lost in translation: pluripotent stem cell-derived hematopoiesis.

Ackermann M, Liebhaber S, Klusmann JH, Lachmann N - EMBO Mol Med (2015)

Primitive and definitive hematopoietic development in vitroHematopoietic specification from pluripotent stem cells in vitro is primarily driven by the formation of mesodermal cells, which later gives rise to different hematopoietic cells by a hemato-endothelial progenitor. At this stage, hematopoietic differentiation in vitro can in principle generate cells of primitive or definitive hematopoiesis, which can be differentiated using specific experimental setups. Hematopoietic progenitor cells, which emerge during the differentiation process and are able to (i) give rise to erythroid cells that express adult hemoglobin (HbA or β-hemoglobin), (ii) give rise to T-lymphoid cells when cultured on NOTCH-delta ligand 1/4 (DL1 or DL4)-expressing OP9 cells, or (iii) multilineage reconstitute immunocompromised mice, are defined as cells derived from a definitive hematopoietic program. In contrast, hematopoietic progenitor cells that are not capable of fulfilling these criteria are defined as cells derived from primitive hematopoiesis. Although both programs can occur in vitro, defined signaling pathways such as Wnt, Activin/Nodal, or extracellular stimuli such as tenascin C have been proven to direct the hematopoietic program toward definitive or primitive hematopoiesis.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4644373&req=5

fig02: Primitive and definitive hematopoietic development in vitroHematopoietic specification from pluripotent stem cells in vitro is primarily driven by the formation of mesodermal cells, which later gives rise to different hematopoietic cells by a hemato-endothelial progenitor. At this stage, hematopoietic differentiation in vitro can in principle generate cells of primitive or definitive hematopoiesis, which can be differentiated using specific experimental setups. Hematopoietic progenitor cells, which emerge during the differentiation process and are able to (i) give rise to erythroid cells that express adult hemoglobin (HbA or β-hemoglobin), (ii) give rise to T-lymphoid cells when cultured on NOTCH-delta ligand 1/4 (DL1 or DL4)-expressing OP9 cells, or (iii) multilineage reconstitute immunocompromised mice, are defined as cells derived from a definitive hematopoietic program. In contrast, hematopoietic progenitor cells that are not capable of fulfilling these criteria are defined as cells derived from primitive hematopoiesis. Although both programs can occur in vitro, defined signaling pathways such as Wnt, Activin/Nodal, or extracellular stimuli such as tenascin C have been proven to direct the hematopoietic program toward definitive or primitive hematopoiesis.
Mentions: During mammalian embryonic development, the emergence of definitive hematopoietic “stem” cells characterized by their potential to generate B- and T-lymphoid cells as well as to repopulate an irradiated host is preceded by a wave of primitive hematopoiesis (Yoder, 2014). In this line, inducing a definitive hematopoietic program during the in vitro differentiation process of PSCs may resemble the prerequisite to generate HSCs with long-term engraftment potential. Probably, this switch from the primitive to definitive hematopoiesis represents the bottleneck that is hindering the efficient long-term engraftment potential of PSC-derived hematopoietic stem/progenitor cells (HSPCs) so far (Szabo et al, 2010; Ran et al, 2013) (see also Fig2).

Bottom Line: In addition, we would like to shed light on emerging factors controlling primitive and definitive hematopoietic development and to highlight recent approaches to improve the differentiation potential of PSC sources toward hematopoietic stem/progenitor cells.While the generation of fully defined hematopoietic stem cells from PSCs remains challenging in vitro, we here underline the instructive role of cell extrinsic factors such as cytokines for the generation of PSC-derived mature hematopoietic cells.Thus, we have comprehensively examined the role of cytokines for the derivation of mature hematopoietic cell types such as macrophages, granulocytes, megakaryocytes, erythrocytes, dendritic cells, and cells of the B- and T-cell lineage.

View Article: PubMed Central - PubMed

Affiliation: RG Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence Hannover Medical School, Hannover, Germany Institute of Experimental Hematology Hannover Medical School, Hannover, Germany.

Show MeSH