Limits...
Habitat fragmentation and its lasting impact on Earth's ecosystems.

Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song DX, Townshend JR - Sci Adv (2015)

Bottom Line: We conducted an analysis of global forest cover to reveal that 70% of remaining forest is within 1 km of the forest's edge, subject to the degrading effects of fragmentation.A synthesis of fragmentation experiments spanning multiple biomes and scales, five continents, and 35 years demonstrates that habitat fragmentation reduces biodiversity by 13 to 75% and impairs key ecosystem functions by decreasing biomass and altering nutrient cycles.These findings indicate an urgent need for conservation and restoration measures to improve landscape connectivity, which will reduce extinction rates and help maintain ecosystem services.

View Article: PubMed Central - PubMed

Affiliation: Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.

ABSTRACT
We conducted an analysis of global forest cover to reveal that 70% of remaining forest is within 1 km of the forest's edge, subject to the degrading effects of fragmentation. A synthesis of fragmentation experiments spanning multiple biomes and scales, five continents, and 35 years demonstrates that habitat fragmentation reduces biodiversity by 13 to 75% and impairs key ecosystem functions by decreasing biomass and altering nutrient cycles. Effects are greatest in the smallest and most isolated fragments, and they magnify with the passage of time. These findings indicate an urgent need for conservation and restoration measures to improve landscape connectivity, which will reduce extinction rates and help maintain ecosystem services.

No MeSH data available.


Related in: MedlinePlus

Delayed effects of fragmentation on ecosystem degradation.(A) The extinction debt represents a delayed loss of species due to fragmentation. (B) The immigration lag represents differences in species richness caused by smaller fragment area or increased isolation during fragment succession. (C) The ecosystem function debt represents delayed changes in ecosystem function due to reduced fragment size or increased isolation. Percent loss is calculated as proportional change in fragmented treatments [for example, (no. of species in fragment − no. of species in control)/(no. of species in control) × 100]. Fragments and controls were either the same area before and after fragmentation, fragments compared to unfragmented controls, or small compared to large fragments. Filled symbols indicate times when fragmentation effects became significant, as determined by the original studies (see table S2). Mean slopes (dashed lines) were estimated using linear mixed (random slopes) models. Mean slope estimates (mean and SE) were as follows: (A) −0.22935 (0.07529); (B) −0.06519 (0.03495); (C) −0.38568 (0.16010).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4643828&req=5

Figure 4: Delayed effects of fragmentation on ecosystem degradation.(A) The extinction debt represents a delayed loss of species due to fragmentation. (B) The immigration lag represents differences in species richness caused by smaller fragment area or increased isolation during fragment succession. (C) The ecosystem function debt represents delayed changes in ecosystem function due to reduced fragment size or increased isolation. Percent loss is calculated as proportional change in fragmented treatments [for example, (no. of species in fragment − no. of species in control)/(no. of species in control) × 100]. Fragments and controls were either the same area before and after fragmentation, fragments compared to unfragmented controls, or small compared to large fragments. Filled symbols indicate times when fragmentation effects became significant, as determined by the original studies (see table S2). Mean slopes (dashed lines) were estimated using linear mixed (random slopes) models. Mean slope estimates (mean and SE) were as follows: (A) −0.22935 (0.07529); (B) −0.06519 (0.03495); (C) −0.38568 (0.16010).

Mentions: To synthesize all time series of species richness and ecosystem functioning gathered across experiments, we measured effects of fragmentation over the course of each study. The effect of fragmentation was calculated over time as the proportional change in fragmented relative to non- or less-fragmented treatments (Fig. 4).


Habitat fragmentation and its lasting impact on Earth's ecosystems.

Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song DX, Townshend JR - Sci Adv (2015)

Delayed effects of fragmentation on ecosystem degradation.(A) The extinction debt represents a delayed loss of species due to fragmentation. (B) The immigration lag represents differences in species richness caused by smaller fragment area or increased isolation during fragment succession. (C) The ecosystem function debt represents delayed changes in ecosystem function due to reduced fragment size or increased isolation. Percent loss is calculated as proportional change in fragmented treatments [for example, (no. of species in fragment − no. of species in control)/(no. of species in control) × 100]. Fragments and controls were either the same area before and after fragmentation, fragments compared to unfragmented controls, or small compared to large fragments. Filled symbols indicate times when fragmentation effects became significant, as determined by the original studies (see table S2). Mean slopes (dashed lines) were estimated using linear mixed (random slopes) models. Mean slope estimates (mean and SE) were as follows: (A) −0.22935 (0.07529); (B) −0.06519 (0.03495); (C) −0.38568 (0.16010).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4643828&req=5

Figure 4: Delayed effects of fragmentation on ecosystem degradation.(A) The extinction debt represents a delayed loss of species due to fragmentation. (B) The immigration lag represents differences in species richness caused by smaller fragment area or increased isolation during fragment succession. (C) The ecosystem function debt represents delayed changes in ecosystem function due to reduced fragment size or increased isolation. Percent loss is calculated as proportional change in fragmented treatments [for example, (no. of species in fragment − no. of species in control)/(no. of species in control) × 100]. Fragments and controls were either the same area before and after fragmentation, fragments compared to unfragmented controls, or small compared to large fragments. Filled symbols indicate times when fragmentation effects became significant, as determined by the original studies (see table S2). Mean slopes (dashed lines) were estimated using linear mixed (random slopes) models. Mean slope estimates (mean and SE) were as follows: (A) −0.22935 (0.07529); (B) −0.06519 (0.03495); (C) −0.38568 (0.16010).
Mentions: To synthesize all time series of species richness and ecosystem functioning gathered across experiments, we measured effects of fragmentation over the course of each study. The effect of fragmentation was calculated over time as the proportional change in fragmented relative to non- or less-fragmented treatments (Fig. 4).

Bottom Line: We conducted an analysis of global forest cover to reveal that 70% of remaining forest is within 1 km of the forest's edge, subject to the degrading effects of fragmentation.A synthesis of fragmentation experiments spanning multiple biomes and scales, five continents, and 35 years demonstrates that habitat fragmentation reduces biodiversity by 13 to 75% and impairs key ecosystem functions by decreasing biomass and altering nutrient cycles.These findings indicate an urgent need for conservation and restoration measures to improve landscape connectivity, which will reduce extinction rates and help maintain ecosystem services.

View Article: PubMed Central - PubMed

Affiliation: Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.

ABSTRACT
We conducted an analysis of global forest cover to reveal that 70% of remaining forest is within 1 km of the forest's edge, subject to the degrading effects of fragmentation. A synthesis of fragmentation experiments spanning multiple biomes and scales, five continents, and 35 years demonstrates that habitat fragmentation reduces biodiversity by 13 to 75% and impairs key ecosystem functions by decreasing biomass and altering nutrient cycles. Effects are greatest in the smallest and most isolated fragments, and they magnify with the passage of time. These findings indicate an urgent need for conservation and restoration measures to improve landscape connectivity, which will reduce extinction rates and help maintain ecosystem services.

No MeSH data available.


Related in: MedlinePlus