Limits...
Organic printed photonics: From microring lasers to integrated circuits.

Zhang C, Zou CL, Zhao Y, Dong CH, Wei C, Wang H, Liu Y, Guo GC, Yao J, Zhao YS - Sci Adv (2015)

Bottom Line: The high material compatibility of this printed photonic chip enabled us to realize low-threshold microlasers by doping organic functional molecules into a typical photonic device.On an identical chip, this construction strategy allowed us to design a complex assembly of one-dimensional waveguide and resonator components for light signal filtering and optical storage toward the large-scale on-chip integration of microscopic photonic units.Thus, we have developed a scheme for soft photonic integration that may motivate further studies on organic photonic materials and devices.

View Article: PubMed Central - PubMed

Affiliation: Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

ABSTRACT
A photonic integrated circuit (PIC) is the optical analogy of an electronic loop in which photons are signal carriers with high transport speed and parallel processing capability. Besides the most frequently demonstrated silicon-based circuits, PICs require a variety of materials for light generation, processing, modulation, and detection. With their diversity and flexibility, organic molecular materials provide an alternative platform for photonics; however, the versatile fabrication of organic integrated circuits with the desired photonic performance remains a big challenge. The rapid development of flexible electronics has shown that a solution printing technique has considerable potential for the large-scale fabrication and integration of microsized/nanosized devices. We propose the idea of soft photonics and demonstrate the function-directed fabrication of high-quality organic photonic devices and circuits. We prepared size-tunable and reproducible polymer microring resonators on a wafer-scale transparent and flexible chip using a solution printing technique. The printed optical resonator showed a quality (Q) factor higher than 4 × 10(5), which is comparable to that of silicon-based resonators. The high material compatibility of this printed photonic chip enabled us to realize low-threshold microlasers by doping organic functional molecules into a typical photonic device. On an identical chip, this construction strategy allowed us to design a complex assembly of one-dimensional waveguide and resonator components for light signal filtering and optical storage toward the large-scale on-chip integration of microscopic photonic units. Thus, we have developed a scheme for soft photonic integration that may motivate further studies on organic photonic materials and devices.

No MeSH data available.


Related in: MedlinePlus

Characterization of printed microrings as high-Q resonators.(A) Microscopy image of the structure built for optical measurement. (Top) The optical fiber taper was coupled with a microring at the edge of the film, which was connected to a wavelength-tunable laser at one end and to a photodetector at the other end. (Bottom) The microring was uniformly illuminated when the input wavelength was found at any of its resonance modes. Scale bar, 50 μm. (B) Microscopy image of two conjugated microrings coupled with the fiber taper (top left). The incident laser was tuned to the wavelength of the resonance mode of ring 1 and/or ring 2 to illuminate the rings simultaneously (top right) or separately (bottom). Scale bar, 50 μm. (C) Frequency detuning profile of the 632.15-nm (~4.75 × 105 GHz) resonance mode from the microring resonator with a TE polarized laser. The corresponding Q factor is 4.33 × 105, as calculated from the frequency of incident light divided by the linewidth of the Lorentz fit (red). (D) Broad-range transmission spectrum from the microring, where periodic sharp dips indicate an average Q factor higher than 105.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4643768&req=5

Figure 2: Characterization of printed microrings as high-Q resonators.(A) Microscopy image of the structure built for optical measurement. (Top) The optical fiber taper was coupled with a microring at the edge of the film, which was connected to a wavelength-tunable laser at one end and to a photodetector at the other end. (Bottom) The microring was uniformly illuminated when the input wavelength was found at any of its resonance modes. Scale bar, 50 μm. (B) Microscopy image of two conjugated microrings coupled with the fiber taper (top left). The incident laser was tuned to the wavelength of the resonance mode of ring 1 and/or ring 2 to illuminate the rings simultaneously (top right) or separately (bottom). Scale bar, 50 μm. (C) Frequency detuning profile of the 632.15-nm (~4.75 × 105 GHz) resonance mode from the microring resonator with a TE polarized laser. The corresponding Q factor is 4.33 × 105, as calculated from the frequency of incident light divided by the linewidth of the Lorentz fit (red). (D) Broad-range transmission spectrum from the microring, where periodic sharp dips indicate an average Q factor higher than 105.

Mentions: The efficient optical waveguiding in printed polymer structures enabled the fabricated microrings to further confine the guided light as optical resonators. The Q factor of the microring cavity was higher than 104, making determination of the intrinsic properties of the cavity by free-space characterization difficult. Therefore, we measured near-field passive-mode transmission by applying a fiber taper coupler (Fig. 2A). The incident light from one end of the fiber was coupled to the attached microring, and we found that the entire ring was efficiently illuminated when optical resonance occurred at the incident wavelength. Moreover, in the pair of conjugated microrings that served as coupled resonators (Fig. 2B), the on-resonance/off-resonance states of each ring were controlled individually based on their distinct resonance modes. The resonance modes confined in the microrings produced transmission dips that were measured from the other end of the fiber (Fig. 2C), and the Q factor was obtained from the width of these dips. The highest Q factor of TE modes was experimentally obtained as 4.33 × 105 (and even rivaled those of silicon-based cavities), which was calculated by dividing the light frequency by the narrow linewidth of the Lorentzian-shaped dip. A series of periodical sharp dips was observed in the transmission spectrum (Fig. 2D), which was attributed to TE resonance modes from the ring resonator. The transmission at resonance wavelength was as low as 0.03, which shows a near-critical coupling between the fiber and the ring. The free-space range of TE modes was ~0.697 nm, and the corresponding group index was 1.414. In comparison, the Q factor of TM modes (Q = 5.4 × 104) was nearly one order of magnitude lower than that of TE modes because of the light coupling of TM modes to the substrate (fig. S10). Numerical simulation predicted an increased Q factor in a larger microring; however, we experimentally observed a maximum of ~4 × 105 in ~100-μm microrings (fig. S11). The Q factor in larger rings might be limited by imperfect shape and increased scattering loss. In principle, the Q factor could increase up to 107 by further optimizing the materials and the fabrication process.


Organic printed photonics: From microring lasers to integrated circuits.

Zhang C, Zou CL, Zhao Y, Dong CH, Wei C, Wang H, Liu Y, Guo GC, Yao J, Zhao YS - Sci Adv (2015)

Characterization of printed microrings as high-Q resonators.(A) Microscopy image of the structure built for optical measurement. (Top) The optical fiber taper was coupled with a microring at the edge of the film, which was connected to a wavelength-tunable laser at one end and to a photodetector at the other end. (Bottom) The microring was uniformly illuminated when the input wavelength was found at any of its resonance modes. Scale bar, 50 μm. (B) Microscopy image of two conjugated microrings coupled with the fiber taper (top left). The incident laser was tuned to the wavelength of the resonance mode of ring 1 and/or ring 2 to illuminate the rings simultaneously (top right) or separately (bottom). Scale bar, 50 μm. (C) Frequency detuning profile of the 632.15-nm (~4.75 × 105 GHz) resonance mode from the microring resonator with a TE polarized laser. The corresponding Q factor is 4.33 × 105, as calculated from the frequency of incident light divided by the linewidth of the Lorentz fit (red). (D) Broad-range transmission spectrum from the microring, where periodic sharp dips indicate an average Q factor higher than 105.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4643768&req=5

Figure 2: Characterization of printed microrings as high-Q resonators.(A) Microscopy image of the structure built for optical measurement. (Top) The optical fiber taper was coupled with a microring at the edge of the film, which was connected to a wavelength-tunable laser at one end and to a photodetector at the other end. (Bottom) The microring was uniformly illuminated when the input wavelength was found at any of its resonance modes. Scale bar, 50 μm. (B) Microscopy image of two conjugated microrings coupled with the fiber taper (top left). The incident laser was tuned to the wavelength of the resonance mode of ring 1 and/or ring 2 to illuminate the rings simultaneously (top right) or separately (bottom). Scale bar, 50 μm. (C) Frequency detuning profile of the 632.15-nm (~4.75 × 105 GHz) resonance mode from the microring resonator with a TE polarized laser. The corresponding Q factor is 4.33 × 105, as calculated from the frequency of incident light divided by the linewidth of the Lorentz fit (red). (D) Broad-range transmission spectrum from the microring, where periodic sharp dips indicate an average Q factor higher than 105.
Mentions: The efficient optical waveguiding in printed polymer structures enabled the fabricated microrings to further confine the guided light as optical resonators. The Q factor of the microring cavity was higher than 104, making determination of the intrinsic properties of the cavity by free-space characterization difficult. Therefore, we measured near-field passive-mode transmission by applying a fiber taper coupler (Fig. 2A). The incident light from one end of the fiber was coupled to the attached microring, and we found that the entire ring was efficiently illuminated when optical resonance occurred at the incident wavelength. Moreover, in the pair of conjugated microrings that served as coupled resonators (Fig. 2B), the on-resonance/off-resonance states of each ring were controlled individually based on their distinct resonance modes. The resonance modes confined in the microrings produced transmission dips that were measured from the other end of the fiber (Fig. 2C), and the Q factor was obtained from the width of these dips. The highest Q factor of TE modes was experimentally obtained as 4.33 × 105 (and even rivaled those of silicon-based cavities), which was calculated by dividing the light frequency by the narrow linewidth of the Lorentzian-shaped dip. A series of periodical sharp dips was observed in the transmission spectrum (Fig. 2D), which was attributed to TE resonance modes from the ring resonator. The transmission at resonance wavelength was as low as 0.03, which shows a near-critical coupling between the fiber and the ring. The free-space range of TE modes was ~0.697 nm, and the corresponding group index was 1.414. In comparison, the Q factor of TM modes (Q = 5.4 × 104) was nearly one order of magnitude lower than that of TE modes because of the light coupling of TM modes to the substrate (fig. S10). Numerical simulation predicted an increased Q factor in a larger microring; however, we experimentally observed a maximum of ~4 × 105 in ~100-μm microrings (fig. S11). The Q factor in larger rings might be limited by imperfect shape and increased scattering loss. In principle, the Q factor could increase up to 107 by further optimizing the materials and the fabrication process.

Bottom Line: The high material compatibility of this printed photonic chip enabled us to realize low-threshold microlasers by doping organic functional molecules into a typical photonic device.On an identical chip, this construction strategy allowed us to design a complex assembly of one-dimensional waveguide and resonator components for light signal filtering and optical storage toward the large-scale on-chip integration of microscopic photonic units.Thus, we have developed a scheme for soft photonic integration that may motivate further studies on organic photonic materials and devices.

View Article: PubMed Central - PubMed

Affiliation: Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

ABSTRACT
A photonic integrated circuit (PIC) is the optical analogy of an electronic loop in which photons are signal carriers with high transport speed and parallel processing capability. Besides the most frequently demonstrated silicon-based circuits, PICs require a variety of materials for light generation, processing, modulation, and detection. With their diversity and flexibility, organic molecular materials provide an alternative platform for photonics; however, the versatile fabrication of organic integrated circuits with the desired photonic performance remains a big challenge. The rapid development of flexible electronics has shown that a solution printing technique has considerable potential for the large-scale fabrication and integration of microsized/nanosized devices. We propose the idea of soft photonics and demonstrate the function-directed fabrication of high-quality organic photonic devices and circuits. We prepared size-tunable and reproducible polymer microring resonators on a wafer-scale transparent and flexible chip using a solution printing technique. The printed optical resonator showed a quality (Q) factor higher than 4 × 10(5), which is comparable to that of silicon-based resonators. The high material compatibility of this printed photonic chip enabled us to realize low-threshold microlasers by doping organic functional molecules into a typical photonic device. On an identical chip, this construction strategy allowed us to design a complex assembly of one-dimensional waveguide and resonator components for light signal filtering and optical storage toward the large-scale on-chip integration of microscopic photonic units. Thus, we have developed a scheme for soft photonic integration that may motivate further studies on organic photonic materials and devices.

No MeSH data available.


Related in: MedlinePlus