Limits...
Submaximal cardiopulmonary thresholds on a robotics-assisted tilt table, a cycle and a treadmill: a comparative analysis.

Saengsuwan J, Nef T, Laubacher M, Hunt KJ - Biomed Eng Online (2015)

Bottom Line: High correlations for VAT and RCP were found between the RATT vs the cycle ergometer and RATT vs the treadmill (R on the range 0.69-0.80).The ventilatory equivalent for CO2 at RCP was similar for all devices.Repeatability and test-retest reliability of all submaximal threshold parameters from the RATT were comparable to those of standard devices.

View Article: PubMed Central - PubMed

Affiliation: Division of Mechanical Engineering, Department of Engineering and Information Technology, Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, Pestalozzistrasse 20, 3400, Burgdorf, Switzerland. jittima.saengsuwan@bfh.ch.

ABSTRACT

Background: The robotics-assisted tilt table (RATT), including actuators for tilting and cyclical leg movement, is used for rehabilitation of severely disabled neurological patients. Following further engineering development of the system, i.e. the addition of force sensors and visual bio-feedback, patients can actively participate in exercise testing and training on the device. Peak cardiopulmonary performance parameters were previously investigated, but it also important to compare submaximal parameters with standard devices. The aim of this study was to evaluate the feasibility of the RATT for estimation of submaximal exercise thresholds by comparison with a cycle ergometer and a treadmill.

Methods: 17 healthy subjects randomly performed six maximal individualized incremental exercise tests, with two tests on each of the three exercise modalities. The ventilatory anaerobic threshold (VAT) and respiratory compensation point (RCP) were determined from breath-by-breath data.

Results: VAT and RCP on the RATT were lower than the cycle ergometer and the treadmill: oxygen uptake (V'O2) at VAT was [mean (SD)] 1.2 (0.3), 1.5 (0.4) and 1.6 (0.5) L/min, respectively (p < 0.001); V'O2 at RCP was 1.7 (0.4), 2.3 (0.8) and 2.6 (0.9) L/min, respectively (p = 0.001). High correlations for VAT and RCP were found between the RATT vs the cycle ergometer and RATT vs the treadmill (R on the range 0.69-0.80). VAT and RCP demonstrated excellent test-retest reliability for all three devices (ICC from 0.81 to 0.98). Mean differences between the test and retest values on each device were close to zero. The ventilatory equivalent for O2 at VAT for the RATT and cycle ergometer were similar and both were higher than the treadmill. The ventilatory equivalent for CO2 at RCP was similar for all devices. Ventilatory equivalent parameters demonstrated fair-to-excellent reliability and repeatability.

Conclusions: It is feasible to use the RATT for estimation of submaximal exercise thresholds: VAT and RCP on the RATT were lower than the cycle ergometer and the treadmill, but there were high correlations between the RATT vs the cycle ergometer and vs the treadmill. Repeatability and test-retest reliability of all submaximal threshold parameters from the RATT were comparable to those of standard devices.

No MeSH data available.


Related in: MedlinePlus

Box plots for VO2@VAT, VO2@RCP and VO2peak among the 3 devices. Asterisks represent significant differences in each paired data set assessed by Bonferroni post hoc multiple comparison corrections
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4641341&req=5

Fig3: Box plots for VO2@VAT, VO2@RCP and VO2peak among the 3 devices. Asterisks represent significant differences in each paired data set assessed by Bonferroni post hoc multiple comparison corrections

Mentions: The V′O2@VAT and V′O2@RCP from the RATT were lower than the cycle ergometer and the treadmill: absolute V′O2@VAT from the RATT, the cycle ergometer and the treadmill was [mean (SD)] 1.2 (0.3), 1.5 (0.4) and 1.6 (0.5) L/min, respectively (p < 0.001); V′O2@RCP from the RATT, the cycle ergometer and the treadmill was 1.7 (0.4), 2.3 (0.8) and 2.6 (0.9) L/min, respectively (p = 0.001) (Table 1; Fig. 3). On average, the V′O2@VAT on the RATT was 21.4 % lower than the cycle ergometer V′O2@VAT and 26.1 % lower than the treadmill V′O2@VAT (mean individual differences). The V′O2@RCP on the RATT was 23.9 % lower than the cycle ergometer V′O2@RCP and 30.6 % lower than the treadmill V′O2@RCP (mean individual differences).Table 1


Submaximal cardiopulmonary thresholds on a robotics-assisted tilt table, a cycle and a treadmill: a comparative analysis.

Saengsuwan J, Nef T, Laubacher M, Hunt KJ - Biomed Eng Online (2015)

Box plots for VO2@VAT, VO2@RCP and VO2peak among the 3 devices. Asterisks represent significant differences in each paired data set assessed by Bonferroni post hoc multiple comparison corrections
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4641341&req=5

Fig3: Box plots for VO2@VAT, VO2@RCP and VO2peak among the 3 devices. Asterisks represent significant differences in each paired data set assessed by Bonferroni post hoc multiple comparison corrections
Mentions: The V′O2@VAT and V′O2@RCP from the RATT were lower than the cycle ergometer and the treadmill: absolute V′O2@VAT from the RATT, the cycle ergometer and the treadmill was [mean (SD)] 1.2 (0.3), 1.5 (0.4) and 1.6 (0.5) L/min, respectively (p < 0.001); V′O2@RCP from the RATT, the cycle ergometer and the treadmill was 1.7 (0.4), 2.3 (0.8) and 2.6 (0.9) L/min, respectively (p = 0.001) (Table 1; Fig. 3). On average, the V′O2@VAT on the RATT was 21.4 % lower than the cycle ergometer V′O2@VAT and 26.1 % lower than the treadmill V′O2@VAT (mean individual differences). The V′O2@RCP on the RATT was 23.9 % lower than the cycle ergometer V′O2@RCP and 30.6 % lower than the treadmill V′O2@RCP (mean individual differences).Table 1

Bottom Line: High correlations for VAT and RCP were found between the RATT vs the cycle ergometer and RATT vs the treadmill (R on the range 0.69-0.80).The ventilatory equivalent for CO2 at RCP was similar for all devices.Repeatability and test-retest reliability of all submaximal threshold parameters from the RATT were comparable to those of standard devices.

View Article: PubMed Central - PubMed

Affiliation: Division of Mechanical Engineering, Department of Engineering and Information Technology, Institute for Rehabilitation and Performance Technology, Bern University of Applied Sciences, Pestalozzistrasse 20, 3400, Burgdorf, Switzerland. jittima.saengsuwan@bfh.ch.

ABSTRACT

Background: The robotics-assisted tilt table (RATT), including actuators for tilting and cyclical leg movement, is used for rehabilitation of severely disabled neurological patients. Following further engineering development of the system, i.e. the addition of force sensors and visual bio-feedback, patients can actively participate in exercise testing and training on the device. Peak cardiopulmonary performance parameters were previously investigated, but it also important to compare submaximal parameters with standard devices. The aim of this study was to evaluate the feasibility of the RATT for estimation of submaximal exercise thresholds by comparison with a cycle ergometer and a treadmill.

Methods: 17 healthy subjects randomly performed six maximal individualized incremental exercise tests, with two tests on each of the three exercise modalities. The ventilatory anaerobic threshold (VAT) and respiratory compensation point (RCP) were determined from breath-by-breath data.

Results: VAT and RCP on the RATT were lower than the cycle ergometer and the treadmill: oxygen uptake (V'O2) at VAT was [mean (SD)] 1.2 (0.3), 1.5 (0.4) and 1.6 (0.5) L/min, respectively (p < 0.001); V'O2 at RCP was 1.7 (0.4), 2.3 (0.8) and 2.6 (0.9) L/min, respectively (p = 0.001). High correlations for VAT and RCP were found between the RATT vs the cycle ergometer and RATT vs the treadmill (R on the range 0.69-0.80). VAT and RCP demonstrated excellent test-retest reliability for all three devices (ICC from 0.81 to 0.98). Mean differences between the test and retest values on each device were close to zero. The ventilatory equivalent for O2 at VAT for the RATT and cycle ergometer were similar and both were higher than the treadmill. The ventilatory equivalent for CO2 at RCP was similar for all devices. Ventilatory equivalent parameters demonstrated fair-to-excellent reliability and repeatability.

Conclusions: It is feasible to use the RATT for estimation of submaximal exercise thresholds: VAT and RCP on the RATT were lower than the cycle ergometer and the treadmill, but there were high correlations between the RATT vs the cycle ergometer and vs the treadmill. Repeatability and test-retest reliability of all submaximal threshold parameters from the RATT were comparable to those of standard devices.

No MeSH data available.


Related in: MedlinePlus