Limits...
Global Transcriptome Analysis of the Tentacle of the Jellyfish Cyanea capillata Using Deep Sequencing and Expressed Sequence Tags: Insight into the Toxin- and Degenerative Disease-Related Transcripts.

Liu G, Zhou Y, Liu D, Wang Q, Ruan Z, He Q, Zhang L - PLoS ONE (2015)

Bottom Line: Of these, 21,357 unigenes had homologues in public databases, but the remaining unigenes had no significant matches due to the limited sequence information available and species-specific novel sequences.This is the first description of degenerative disease-associated genes in jellyfish.The findings of this study may also be used in comparative studies of gene expression profiling among different jellyfish species.

View Article: PubMed Central - PubMed

Affiliation: Marine Bio-pharmaceutical Institute, Second Military Medical University, Shanghai 200433, China.

ABSTRACT

Background: Jellyfish contain diverse toxins and other bioactive components. However, large-scale identification of novel toxins and bioactive components from jellyfish has been hampered by the low efficiency of traditional isolation and purification methods.

Results: We performed de novo transcriptome sequencing of the tentacle tissue of the jellyfish Cyanea capillata. A total of 51,304,108 reads were obtained and assembled into 50,536 unigenes. Of these, 21,357 unigenes had homologues in public databases, but the remaining unigenes had no significant matches due to the limited sequence information available and species-specific novel sequences. Functional annotation of the unigenes also revealed general gene expression profile characteristics in the tentacle of C. capillata. A primary goal of this study was to identify putative toxin transcripts. As expected, we screened many transcripts encoding proteins similar to several well-known toxin families including phospholipases, metalloproteases, serine proteases and serine protease inhibitors. In addition, some transcripts also resembled molecules with potential toxic activities, including cnidarian CfTX-like toxins with hemolytic activity, plancitoxin-1, venom toxin-like peptide-6, histamine-releasing factor, neprilysin, dipeptidyl peptidase 4, vascular endothelial growth factor A, angiotensin-converting enzyme-like and endothelin-converting enzyme 1-like proteins. Most of these molecules have not been previously reported in jellyfish. Interestingly, we also characterized a number of transcripts with similarities to proteins relevant to several degenerative diseases, including Huntington's, Alzheimer's and Parkinson's diseases. This is the first description of degenerative disease-associated genes in jellyfish.

Conclusion: We obtained a well-categorized and annotated transcriptome of C. capillata tentacle that will be an important and valuable resource for further understanding of jellyfish at the molecular level and information on the underlying molecular mechanisms of jellyfish stinging. The findings of this study may also be used in comparative studies of gene expression profiling among different jellyfish species.

No MeSH data available.


Related in: MedlinePlus

Alignment of the conserved sequence motifs of Kunitz-type inhibitors.The deduced amino acid sequences of unigenes 18473, 23096, 40962 and 40624 were aligned with known Kunitz-type inhibitors, including Ixodes scapularis Kunitz-domain protein (XP_002435213), Crassostrea gigas putative Kunitz-type proteinase inhibitor (EKC39386), Latrodectus hesperus Kunitz-like protease inhibitor (ADV40132), Astyanax mexicanus Kunitz-type protease inhibitor 1-like (XP_007252976) and Danio rerio Kunitz-type protease inhibitor 1 (AAI63937). The six highly conserved cysteine residues are indicated by asterisks.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4638339&req=5

pone.0142680.g004: Alignment of the conserved sequence motifs of Kunitz-type inhibitors.The deduced amino acid sequences of unigenes 18473, 23096, 40962 and 40624 were aligned with known Kunitz-type inhibitors, including Ixodes scapularis Kunitz-domain protein (XP_002435213), Crassostrea gigas putative Kunitz-type proteinase inhibitor (EKC39386), Latrodectus hesperus Kunitz-like protease inhibitor (ADV40132), Astyanax mexicanus Kunitz-type protease inhibitor 1-like (XP_007252976) and Danio rerio Kunitz-type protease inhibitor 1 (AAI63937). The six highly conserved cysteine residues are indicated by asterisks.

Mentions: Serine protease inhibitors: Several serine protease inhibitors were identified in this study, including Kazal-type (4 transcripts) and Kunitz-type (KUNs) (4 transcripts). The Serpin family (5 transcripts) was also identified (Table 2). Serine protease inhibitors have been widely found in the venoms of many well-known toxic animals [50–52]. However, few toxins of this type have been reported in jellyfish venom. Among this toxin family, Kunitz-type inhibitors have been commonly observed in snake venoms and inhibit both serine proteases and calcium ion channels. They are characterized by three disulfide bonds belonging to a highly conserved motif of C-8X-C-15X-C-4X-YGGC-12X-C-3X-C [50]. In this study, multiple alignment analysis demonstrated that compared with other typical Kunitz-type inhibitors, most of these identified Kunitz-type inhibitor transcripts possess a native Kunitz architecture (Fig 4). The function of serine protease inhibitors in the various venoms has been suggested to be primarily related to the protection of toxin integrity. Additionally, this toxin family may play a role in various physiological processes, such as blood coagulation, fibrinolysis and host defense. However, whether serine protease inhibitors in jellyfish venoms have a similar function remains to be explored, and further investigations are needed.


Global Transcriptome Analysis of the Tentacle of the Jellyfish Cyanea capillata Using Deep Sequencing and Expressed Sequence Tags: Insight into the Toxin- and Degenerative Disease-Related Transcripts.

Liu G, Zhou Y, Liu D, Wang Q, Ruan Z, He Q, Zhang L - PLoS ONE (2015)

Alignment of the conserved sequence motifs of Kunitz-type inhibitors.The deduced amino acid sequences of unigenes 18473, 23096, 40962 and 40624 were aligned with known Kunitz-type inhibitors, including Ixodes scapularis Kunitz-domain protein (XP_002435213), Crassostrea gigas putative Kunitz-type proteinase inhibitor (EKC39386), Latrodectus hesperus Kunitz-like protease inhibitor (ADV40132), Astyanax mexicanus Kunitz-type protease inhibitor 1-like (XP_007252976) and Danio rerio Kunitz-type protease inhibitor 1 (AAI63937). The six highly conserved cysteine residues are indicated by asterisks.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4638339&req=5

pone.0142680.g004: Alignment of the conserved sequence motifs of Kunitz-type inhibitors.The deduced amino acid sequences of unigenes 18473, 23096, 40962 and 40624 were aligned with known Kunitz-type inhibitors, including Ixodes scapularis Kunitz-domain protein (XP_002435213), Crassostrea gigas putative Kunitz-type proteinase inhibitor (EKC39386), Latrodectus hesperus Kunitz-like protease inhibitor (ADV40132), Astyanax mexicanus Kunitz-type protease inhibitor 1-like (XP_007252976) and Danio rerio Kunitz-type protease inhibitor 1 (AAI63937). The six highly conserved cysteine residues are indicated by asterisks.
Mentions: Serine protease inhibitors: Several serine protease inhibitors were identified in this study, including Kazal-type (4 transcripts) and Kunitz-type (KUNs) (4 transcripts). The Serpin family (5 transcripts) was also identified (Table 2). Serine protease inhibitors have been widely found in the venoms of many well-known toxic animals [50–52]. However, few toxins of this type have been reported in jellyfish venom. Among this toxin family, Kunitz-type inhibitors have been commonly observed in snake venoms and inhibit both serine proteases and calcium ion channels. They are characterized by three disulfide bonds belonging to a highly conserved motif of C-8X-C-15X-C-4X-YGGC-12X-C-3X-C [50]. In this study, multiple alignment analysis demonstrated that compared with other typical Kunitz-type inhibitors, most of these identified Kunitz-type inhibitor transcripts possess a native Kunitz architecture (Fig 4). The function of serine protease inhibitors in the various venoms has been suggested to be primarily related to the protection of toxin integrity. Additionally, this toxin family may play a role in various physiological processes, such as blood coagulation, fibrinolysis and host defense. However, whether serine protease inhibitors in jellyfish venoms have a similar function remains to be explored, and further investigations are needed.

Bottom Line: Of these, 21,357 unigenes had homologues in public databases, but the remaining unigenes had no significant matches due to the limited sequence information available and species-specific novel sequences.This is the first description of degenerative disease-associated genes in jellyfish.The findings of this study may also be used in comparative studies of gene expression profiling among different jellyfish species.

View Article: PubMed Central - PubMed

Affiliation: Marine Bio-pharmaceutical Institute, Second Military Medical University, Shanghai 200433, China.

ABSTRACT

Background: Jellyfish contain diverse toxins and other bioactive components. However, large-scale identification of novel toxins and bioactive components from jellyfish has been hampered by the low efficiency of traditional isolation and purification methods.

Results: We performed de novo transcriptome sequencing of the tentacle tissue of the jellyfish Cyanea capillata. A total of 51,304,108 reads were obtained and assembled into 50,536 unigenes. Of these, 21,357 unigenes had homologues in public databases, but the remaining unigenes had no significant matches due to the limited sequence information available and species-specific novel sequences. Functional annotation of the unigenes also revealed general gene expression profile characteristics in the tentacle of C. capillata. A primary goal of this study was to identify putative toxin transcripts. As expected, we screened many transcripts encoding proteins similar to several well-known toxin families including phospholipases, metalloproteases, serine proteases and serine protease inhibitors. In addition, some transcripts also resembled molecules with potential toxic activities, including cnidarian CfTX-like toxins with hemolytic activity, plancitoxin-1, venom toxin-like peptide-6, histamine-releasing factor, neprilysin, dipeptidyl peptidase 4, vascular endothelial growth factor A, angiotensin-converting enzyme-like and endothelin-converting enzyme 1-like proteins. Most of these molecules have not been previously reported in jellyfish. Interestingly, we also characterized a number of transcripts with similarities to proteins relevant to several degenerative diseases, including Huntington's, Alzheimer's and Parkinson's diseases. This is the first description of degenerative disease-associated genes in jellyfish.

Conclusion: We obtained a well-categorized and annotated transcriptome of C. capillata tentacle that will be an important and valuable resource for further understanding of jellyfish at the molecular level and information on the underlying molecular mechanisms of jellyfish stinging. The findings of this study may also be used in comparative studies of gene expression profiling among different jellyfish species.

No MeSH data available.


Related in: MedlinePlus