Limits...
Insect Biometrics: Optoacoustic Signal Processing and Its Applications to Remote Monitoring of McPhail Type Traps.

Potamitis I, Rigakis I, Fysarakis K - PLoS ONE (2015)

Bottom Line: Pests can be controlled with ground pesticide sprays, the efficiency of which depends on knowing the time, location and extent of infestations as early as possible.We introduce the term 'insect biometrics' in the context of entomology as a measure of a characteristic of the insect (in our case, the spectrum of its wingbeat) that allows us to identify its species and make devices to help face old enemies with modern means.Our experiments assess the potential of delivering reliable data that can be used to initialize reliably the spraying process at large scales but to also monitor the impact of the spraying process as it eliminates the time-lag between acquiring and delivering insect counts to a central agency.

View Article: PubMed Central - PubMed

Affiliation: Department of Music Technology & Acoustics, Technological Educational Institute of Crete, E. Daskalaki Perivolia, 74100, Rethymno Crete, Greece.

ABSTRACT
Monitoring traps are important components of integrated pest management applied against important fruit fly pests, including Bactrocera oleae (Gmelin) and Ceratitis capitata (Widemann), Diptera of the Tephritidae family, which effect a crop-loss/per year calculated in billions of euros worldwide. Pests can be controlled with ground pesticide sprays, the efficiency of which depends on knowing the time, location and extent of infestations as early as possible. Trap inspection is currently carried out manually, using the McPhail trap, and the mass spraying is decided based on a decision protocol. We introduce the term 'insect biometrics' in the context of entomology as a measure of a characteristic of the insect (in our case, the spectrum of its wingbeat) that allows us to identify its species and make devices to help face old enemies with modern means. We modify a McPhail type trap into becoming electronic by installing an array of photoreceptors coupled to an infrared emitter, guarding the entrance of the trap. The beating wings of insects flying in the trap intercept the light and the light fluctuation is turned to a recording. Custom-made electronics are developed that are placed as an external add-on kit, without altering the internal space of the trap. Counts from the trap are transmitted using a mobile communication network. This trap introduces a new automated remote-monitoring method different to audio and vision-based systems. We evaluate our trap in large number of insects in the laboratory by enclosing the electronic trap in insectary cages. Our experiments assess the potential of delivering reliable data that can be used to initialize reliably the spraying process at large scales but to also monitor the impact of the spraying process as it eliminates the time-lag between acquiring and delivering insect counts to a central agency.

No MeSH data available.


Related in: MedlinePlus

Spectrum of wingbeat recording of insect flying in the trap.(Left)B.oleae, (right)A. gambiae.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4636391&req=5

pone.0140474.g015: Spectrum of wingbeat recording of insect flying in the trap.(Left)B.oleae, (right)A. gambiae.

Mentions: First, we verify the presence of B. oleae against two mosquito species Anopheles gambiae and Culex pipiens molestus. The experimental results in Fig 13 and Table 2 show very good capability of discerning B. oleae against these mosquito species. All recordings in the verification experiments with the exception of bees are derived from insects either flying in or by walking until the internal border of the trap and then flying-in (see Fig 14). One should have in mind that this was not a difficult scenario as the spectrum of a typical case of a B. oleae wingbeat is lower in frequency content than the high pitched mosquitoes (see Fig 15).


Insect Biometrics: Optoacoustic Signal Processing and Its Applications to Remote Monitoring of McPhail Type Traps.

Potamitis I, Rigakis I, Fysarakis K - PLoS ONE (2015)

Spectrum of wingbeat recording of insect flying in the trap.(Left)B.oleae, (right)A. gambiae.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4636391&req=5

pone.0140474.g015: Spectrum of wingbeat recording of insect flying in the trap.(Left)B.oleae, (right)A. gambiae.
Mentions: First, we verify the presence of B. oleae against two mosquito species Anopheles gambiae and Culex pipiens molestus. The experimental results in Fig 13 and Table 2 show very good capability of discerning B. oleae against these mosquito species. All recordings in the verification experiments with the exception of bees are derived from insects either flying in or by walking until the internal border of the trap and then flying-in (see Fig 14). One should have in mind that this was not a difficult scenario as the spectrum of a typical case of a B. oleae wingbeat is lower in frequency content than the high pitched mosquitoes (see Fig 15).

Bottom Line: Pests can be controlled with ground pesticide sprays, the efficiency of which depends on knowing the time, location and extent of infestations as early as possible.We introduce the term 'insect biometrics' in the context of entomology as a measure of a characteristic of the insect (in our case, the spectrum of its wingbeat) that allows us to identify its species and make devices to help face old enemies with modern means.Our experiments assess the potential of delivering reliable data that can be used to initialize reliably the spraying process at large scales but to also monitor the impact of the spraying process as it eliminates the time-lag between acquiring and delivering insect counts to a central agency.

View Article: PubMed Central - PubMed

Affiliation: Department of Music Technology & Acoustics, Technological Educational Institute of Crete, E. Daskalaki Perivolia, 74100, Rethymno Crete, Greece.

ABSTRACT
Monitoring traps are important components of integrated pest management applied against important fruit fly pests, including Bactrocera oleae (Gmelin) and Ceratitis capitata (Widemann), Diptera of the Tephritidae family, which effect a crop-loss/per year calculated in billions of euros worldwide. Pests can be controlled with ground pesticide sprays, the efficiency of which depends on knowing the time, location and extent of infestations as early as possible. Trap inspection is currently carried out manually, using the McPhail trap, and the mass spraying is decided based on a decision protocol. We introduce the term 'insect biometrics' in the context of entomology as a measure of a characteristic of the insect (in our case, the spectrum of its wingbeat) that allows us to identify its species and make devices to help face old enemies with modern means. We modify a McPhail type trap into becoming electronic by installing an array of photoreceptors coupled to an infrared emitter, guarding the entrance of the trap. The beating wings of insects flying in the trap intercept the light and the light fluctuation is turned to a recording. Custom-made electronics are developed that are placed as an external add-on kit, without altering the internal space of the trap. Counts from the trap are transmitted using a mobile communication network. This trap introduces a new automated remote-monitoring method different to audio and vision-based systems. We evaluate our trap in large number of insects in the laboratory by enclosing the electronic trap in insectary cages. Our experiments assess the potential of delivering reliable data that can be used to initialize reliably the spraying process at large scales but to also monitor the impact of the spraying process as it eliminates the time-lag between acquiring and delivering insect counts to a central agency.

No MeSH data available.


Related in: MedlinePlus