Limits...
Insect Biometrics: Optoacoustic Signal Processing and Its Applications to Remote Monitoring of McPhail Type Traps.

Potamitis I, Rigakis I, Fysarakis K - PLoS ONE (2015)

Bottom Line: Pests can be controlled with ground pesticide sprays, the efficiency of which depends on knowing the time, location and extent of infestations as early as possible.We introduce the term 'insect biometrics' in the context of entomology as a measure of a characteristic of the insect (in our case, the spectrum of its wingbeat) that allows us to identify its species and make devices to help face old enemies with modern means.Our experiments assess the potential of delivering reliable data that can be used to initialize reliably the spraying process at large scales but to also monitor the impact of the spraying process as it eliminates the time-lag between acquiring and delivering insect counts to a central agency.

View Article: PubMed Central - PubMed

Affiliation: Department of Music Technology & Acoustics, Technological Educational Institute of Crete, E. Daskalaki Perivolia, 74100, Rethymno Crete, Greece.

ABSTRACT
Monitoring traps are important components of integrated pest management applied against important fruit fly pests, including Bactrocera oleae (Gmelin) and Ceratitis capitata (Widemann), Diptera of the Tephritidae family, which effect a crop-loss/per year calculated in billions of euros worldwide. Pests can be controlled with ground pesticide sprays, the efficiency of which depends on knowing the time, location and extent of infestations as early as possible. Trap inspection is currently carried out manually, using the McPhail trap, and the mass spraying is decided based on a decision protocol. We introduce the term 'insect biometrics' in the context of entomology as a measure of a characteristic of the insect (in our case, the spectrum of its wingbeat) that allows us to identify its species and make devices to help face old enemies with modern means. We modify a McPhail type trap into becoming electronic by installing an array of photoreceptors coupled to an infrared emitter, guarding the entrance of the trap. The beating wings of insects flying in the trap intercept the light and the light fluctuation is turned to a recording. Custom-made electronics are developed that are placed as an external add-on kit, without altering the internal space of the trap. Counts from the trap are transmitted using a mobile communication network. This trap introduces a new automated remote-monitoring method different to audio and vision-based systems. We evaluate our trap in large number of insects in the laboratory by enclosing the electronic trap in insectary cages. Our experiments assess the potential of delivering reliable data that can be used to initialize reliably the spraying process at large scales but to also monitor the impact of the spraying process as it eliminates the time-lag between acquiring and delivering insect counts to a central agency.

No MeSH data available.


Related in: MedlinePlus

An optical sensor and a microphone transducer embedded in the same cage holding B. oleae insects.PSD of photodiodes array vs microphone transducer. Both sensors resolve the fundamental frequency of the wingbeat and have good accordance until the 5th harmonic. In this particular controlled setup, the microphone can resolve higher harmonics as well.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4636391&req=5

pone.0140474.g007: An optical sensor and a microphone transducer embedded in the same cage holding B. oleae insects.PSD of photodiodes array vs microphone transducer. Both sensors resolve the fundamental frequency of the wingbeat and have good accordance until the 5th harmonic. In this particular controlled setup, the microphone can resolve higher harmonics as well.

Mentions: We have fabricated two versions of the optoelectronic device; the receiver is either an array of photodiodes or phototransistors (see S20 Fig), while the emitter is always an infrared light source. Experimentation with a laser as a light source has been reported in [14]. The laser source consumes more power that the infrared light and produces comparable results to the infrared light source. Since power sufficiency is crucial for a device working in the field, we choose the infrared light source as an emitter. Both optical sensors are embedded in the same cage thus recording the same insects at 20°C, 60% humidity. We observe that photodiodes can track better the harmonics of the flying insects compared to phototransistors. Phototransistors have a slower rise and fall time, at around 16 μSeconds while the photodiodes around 80 nSeconds. Moreover, the reception area of photodiodes is slightly larger than phototransistors, allowing for longer recordings, as the insect spends slightly more time in the field of view. The same figure demonstrates that the insects indeed hold a relatively constant wingbeat regardless of the flight pattern and angle of pass through the detector. Since the power spectral density is derived by hundreds of free-flying insects performing thousands of passes, large variations in the frequency of the wingbeat would appear as flat areas in the spectrum which is not the case here as can be verified in Figs 6 and 7.


Insect Biometrics: Optoacoustic Signal Processing and Its Applications to Remote Monitoring of McPhail Type Traps.

Potamitis I, Rigakis I, Fysarakis K - PLoS ONE (2015)

An optical sensor and a microphone transducer embedded in the same cage holding B. oleae insects.PSD of photodiodes array vs microphone transducer. Both sensors resolve the fundamental frequency of the wingbeat and have good accordance until the 5th harmonic. In this particular controlled setup, the microphone can resolve higher harmonics as well.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4636391&req=5

pone.0140474.g007: An optical sensor and a microphone transducer embedded in the same cage holding B. oleae insects.PSD of photodiodes array vs microphone transducer. Both sensors resolve the fundamental frequency of the wingbeat and have good accordance until the 5th harmonic. In this particular controlled setup, the microphone can resolve higher harmonics as well.
Mentions: We have fabricated two versions of the optoelectronic device; the receiver is either an array of photodiodes or phototransistors (see S20 Fig), while the emitter is always an infrared light source. Experimentation with a laser as a light source has been reported in [14]. The laser source consumes more power that the infrared light and produces comparable results to the infrared light source. Since power sufficiency is crucial for a device working in the field, we choose the infrared light source as an emitter. Both optical sensors are embedded in the same cage thus recording the same insects at 20°C, 60% humidity. We observe that photodiodes can track better the harmonics of the flying insects compared to phototransistors. Phototransistors have a slower rise and fall time, at around 16 μSeconds while the photodiodes around 80 nSeconds. Moreover, the reception area of photodiodes is slightly larger than phototransistors, allowing for longer recordings, as the insect spends slightly more time in the field of view. The same figure demonstrates that the insects indeed hold a relatively constant wingbeat regardless of the flight pattern and angle of pass through the detector. Since the power spectral density is derived by hundreds of free-flying insects performing thousands of passes, large variations in the frequency of the wingbeat would appear as flat areas in the spectrum which is not the case here as can be verified in Figs 6 and 7.

Bottom Line: Pests can be controlled with ground pesticide sprays, the efficiency of which depends on knowing the time, location and extent of infestations as early as possible.We introduce the term 'insect biometrics' in the context of entomology as a measure of a characteristic of the insect (in our case, the spectrum of its wingbeat) that allows us to identify its species and make devices to help face old enemies with modern means.Our experiments assess the potential of delivering reliable data that can be used to initialize reliably the spraying process at large scales but to also monitor the impact of the spraying process as it eliminates the time-lag between acquiring and delivering insect counts to a central agency.

View Article: PubMed Central - PubMed

Affiliation: Department of Music Technology & Acoustics, Technological Educational Institute of Crete, E. Daskalaki Perivolia, 74100, Rethymno Crete, Greece.

ABSTRACT
Monitoring traps are important components of integrated pest management applied against important fruit fly pests, including Bactrocera oleae (Gmelin) and Ceratitis capitata (Widemann), Diptera of the Tephritidae family, which effect a crop-loss/per year calculated in billions of euros worldwide. Pests can be controlled with ground pesticide sprays, the efficiency of which depends on knowing the time, location and extent of infestations as early as possible. Trap inspection is currently carried out manually, using the McPhail trap, and the mass spraying is decided based on a decision protocol. We introduce the term 'insect biometrics' in the context of entomology as a measure of a characteristic of the insect (in our case, the spectrum of its wingbeat) that allows us to identify its species and make devices to help face old enemies with modern means. We modify a McPhail type trap into becoming electronic by installing an array of photoreceptors coupled to an infrared emitter, guarding the entrance of the trap. The beating wings of insects flying in the trap intercept the light and the light fluctuation is turned to a recording. Custom-made electronics are developed that are placed as an external add-on kit, without altering the internal space of the trap. Counts from the trap are transmitted using a mobile communication network. This trap introduces a new automated remote-monitoring method different to audio and vision-based systems. We evaluate our trap in large number of insects in the laboratory by enclosing the electronic trap in insectary cages. Our experiments assess the potential of delivering reliable data that can be used to initialize reliably the spraying process at large scales but to also monitor the impact of the spraying process as it eliminates the time-lag between acquiring and delivering insect counts to a central agency.

No MeSH data available.


Related in: MedlinePlus