Limits...
Insect Biometrics: Optoacoustic Signal Processing and Its Applications to Remote Monitoring of McPhail Type Traps.

Potamitis I, Rigakis I, Fysarakis K - PLoS ONE (2015)

Bottom Line: Pests can be controlled with ground pesticide sprays, the efficiency of which depends on knowing the time, location and extent of infestations as early as possible.We introduce the term 'insect biometrics' in the context of entomology as a measure of a characteristic of the insect (in our case, the spectrum of its wingbeat) that allows us to identify its species and make devices to help face old enemies with modern means.Our experiments assess the potential of delivering reliable data that can be used to initialize reliably the spraying process at large scales but to also monitor the impact of the spraying process as it eliminates the time-lag between acquiring and delivering insect counts to a central agency.

View Article: PubMed Central - PubMed

Affiliation: Department of Music Technology & Acoustics, Technological Educational Institute of Crete, E. Daskalaki Perivolia, 74100, Rethymno Crete, Greece.

ABSTRACT
Monitoring traps are important components of integrated pest management applied against important fruit fly pests, including Bactrocera oleae (Gmelin) and Ceratitis capitata (Widemann), Diptera of the Tephritidae family, which effect a crop-loss/per year calculated in billions of euros worldwide. Pests can be controlled with ground pesticide sprays, the efficiency of which depends on knowing the time, location and extent of infestations as early as possible. Trap inspection is currently carried out manually, using the McPhail trap, and the mass spraying is decided based on a decision protocol. We introduce the term 'insect biometrics' in the context of entomology as a measure of a characteristic of the insect (in our case, the spectrum of its wingbeat) that allows us to identify its species and make devices to help face old enemies with modern means. We modify a McPhail type trap into becoming electronic by installing an array of photoreceptors coupled to an infrared emitter, guarding the entrance of the trap. The beating wings of insects flying in the trap intercept the light and the light fluctuation is turned to a recording. Custom-made electronics are developed that are placed as an external add-on kit, without altering the internal space of the trap. Counts from the trap are transmitted using a mobile communication network. This trap introduces a new automated remote-monitoring method different to audio and vision-based systems. We evaluate our trap in large number of insects in the laboratory by enclosing the electronic trap in insectary cages. Our experiments assess the potential of delivering reliable data that can be used to initialize reliably the spraying process at large scales but to also monitor the impact of the spraying process as it eliminates the time-lag between acquiring and delivering insect counts to a central agency.

No MeSH data available.


Related in: MedlinePlus

The optical sensors in their final setup, inside insectary cages with B.oleae.Each time an insect incidentally flies through the rectangle, a recording of a wing flap is acquired.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4636391&req=5

pone.0140474.g005: The optical sensors in their final setup, inside insectary cages with B.oleae.Each time an insect incidentally flies through the rectangle, a recording of a wing flap is acquired.

Mentions: The larvae inside the olive fruit are in various instars and they feed upon the pulp until they exit, usually as third instar larvae which pass through the sieve to pupate. Then they are collected and grown in an insectary cage. As larvae turn into adult insects, we supply them with yeast hydrolysate-sugar diet and water to sustain them to life. We keep only first generation insects, as breeding generations of insects in captivity results into degeneration that might affect the flying mechanism. Denoting as day 0 the time we collect olives from trees, then at day 0–12 the 3d instar larvae come out and, from day 8–20 they turn into adults. The same day (few hours later), they can fly. Adult insects are free to fly without induced stress inside the cage and while they fly they pass incidentally through the ‘candlestick-like’ sensors placed inside the cage (see Fig 5). We place a large number of B. oleae only in cages and the recording of their wingbeat occurs the moment they pass through the rectangle of the sensors on a random basis. The size and shape of the sensor is designed is a way that is possible to pass it through the entrance of a normal insectary cage. This innovative setting allows us to take effortless recordings of a large number of flight cases in a practical way, as insects are generally difficult to manipulate. The sensors can record unattended for a number of days, or indefinitely by connecting the kit containing the battery to a charger. In Fig 5, the insectary cage contains about 500 adults of B. oleae. Depending on the insect density of the cage, one can have an order of hundreds to thousands wingbeat recordings in just few hours.


Insect Biometrics: Optoacoustic Signal Processing and Its Applications to Remote Monitoring of McPhail Type Traps.

Potamitis I, Rigakis I, Fysarakis K - PLoS ONE (2015)

The optical sensors in their final setup, inside insectary cages with B.oleae.Each time an insect incidentally flies through the rectangle, a recording of a wing flap is acquired.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4636391&req=5

pone.0140474.g005: The optical sensors in their final setup, inside insectary cages with B.oleae.Each time an insect incidentally flies through the rectangle, a recording of a wing flap is acquired.
Mentions: The larvae inside the olive fruit are in various instars and they feed upon the pulp until they exit, usually as third instar larvae which pass through the sieve to pupate. Then they are collected and grown in an insectary cage. As larvae turn into adult insects, we supply them with yeast hydrolysate-sugar diet and water to sustain them to life. We keep only first generation insects, as breeding generations of insects in captivity results into degeneration that might affect the flying mechanism. Denoting as day 0 the time we collect olives from trees, then at day 0–12 the 3d instar larvae come out and, from day 8–20 they turn into adults. The same day (few hours later), they can fly. Adult insects are free to fly without induced stress inside the cage and while they fly they pass incidentally through the ‘candlestick-like’ sensors placed inside the cage (see Fig 5). We place a large number of B. oleae only in cages and the recording of their wingbeat occurs the moment they pass through the rectangle of the sensors on a random basis. The size and shape of the sensor is designed is a way that is possible to pass it through the entrance of a normal insectary cage. This innovative setting allows us to take effortless recordings of a large number of flight cases in a practical way, as insects are generally difficult to manipulate. The sensors can record unattended for a number of days, or indefinitely by connecting the kit containing the battery to a charger. In Fig 5, the insectary cage contains about 500 adults of B. oleae. Depending on the insect density of the cage, one can have an order of hundreds to thousands wingbeat recordings in just few hours.

Bottom Line: Pests can be controlled with ground pesticide sprays, the efficiency of which depends on knowing the time, location and extent of infestations as early as possible.We introduce the term 'insect biometrics' in the context of entomology as a measure of a characteristic of the insect (in our case, the spectrum of its wingbeat) that allows us to identify its species and make devices to help face old enemies with modern means.Our experiments assess the potential of delivering reliable data that can be used to initialize reliably the spraying process at large scales but to also monitor the impact of the spraying process as it eliminates the time-lag between acquiring and delivering insect counts to a central agency.

View Article: PubMed Central - PubMed

Affiliation: Department of Music Technology & Acoustics, Technological Educational Institute of Crete, E. Daskalaki Perivolia, 74100, Rethymno Crete, Greece.

ABSTRACT
Monitoring traps are important components of integrated pest management applied against important fruit fly pests, including Bactrocera oleae (Gmelin) and Ceratitis capitata (Widemann), Diptera of the Tephritidae family, which effect a crop-loss/per year calculated in billions of euros worldwide. Pests can be controlled with ground pesticide sprays, the efficiency of which depends on knowing the time, location and extent of infestations as early as possible. Trap inspection is currently carried out manually, using the McPhail trap, and the mass spraying is decided based on a decision protocol. We introduce the term 'insect biometrics' in the context of entomology as a measure of a characteristic of the insect (in our case, the spectrum of its wingbeat) that allows us to identify its species and make devices to help face old enemies with modern means. We modify a McPhail type trap into becoming electronic by installing an array of photoreceptors coupled to an infrared emitter, guarding the entrance of the trap. The beating wings of insects flying in the trap intercept the light and the light fluctuation is turned to a recording. Custom-made electronics are developed that are placed as an external add-on kit, without altering the internal space of the trap. Counts from the trap are transmitted using a mobile communication network. This trap introduces a new automated remote-monitoring method different to audio and vision-based systems. We evaluate our trap in large number of insects in the laboratory by enclosing the electronic trap in insectary cages. Our experiments assess the potential of delivering reliable data that can be used to initialize reliably the spraying process at large scales but to also monitor the impact of the spraying process as it eliminates the time-lag between acquiring and delivering insect counts to a central agency.

No MeSH data available.


Related in: MedlinePlus