Limits...
Canopy Interception for a Tallgrass Prairie under Juniper Encroachment.

Zou CB, Caterina GL, Will RE, Stebler E, Turton D - PLoS ONE (2015)

Bottom Line: Larger trees were more effective in partitioning rainfall into throughfall and no significant changes in the total interception ratios among canopy types and tree size were found.On an annual basis, our results showed no significant difference in total rainfall loss to canopy interception between redcedar trees and tallgrass prairie.Increasing structural complexity associated with redcedar encroachment into tallgrass prairie changes the rainfall redistribution and partitioning pattern at both the temporal and spatial scales, but does not change the overall canopy interception ratios compared with unburned and ungrazed tallgrass prairie.

View Article: PubMed Central - PubMed

Affiliation: Department of Natural Resource Ecology & Management, Oklahoma State University, Stillwater, OK 74078, United States of America.

ABSTRACT
Rainfall partitioning and redistribution by canopies are important ecohydrological processes underlying ecosystem dynamics. We quantified and contrasted spatial and temporal variations of rainfall redistribution for a juniper (Juniperus virginiana, redcedar) woodland and a tallgrass prairie in the south-central Great Plains, USA. Our results showed that redcedar trees had high canopy storage capacity (S) ranging from 2.14 mm for open stands to 3.44 mm for closed stands. The canopy funneling ratios (F) of redcedar trees varied substantially among stand type and tree size. The open stands and smaller trees usually had higher F values and were more efficient in partitioning rainfall into stemflow. Larger trees were more effective in partitioning rainfall into throughfall and no significant changes in the total interception ratios among canopy types and tree size were found. The S values were highly variable for tallgrass prairie, ranging from 0.27 mm at early growing season to 3.86 mm at senescence. As a result, the rainfall interception by tallgrass prairie was characterized by high temporal instability. On an annual basis, our results showed no significant difference in total rainfall loss to canopy interception between redcedar trees and tallgrass prairie. Increasing structural complexity associated with redcedar encroachment into tallgrass prairie changes the rainfall redistribution and partitioning pattern at both the temporal and spatial scales, but does not change the overall canopy interception ratios compared with unburned and ungrazed tallgrass prairie. Our findings support the idea of convergence in interception ratio for different canopy structures under the same precipitation regime. The temporal change in rainfall interception loss from redcedar encroachment is important to understand how juniper encroachment will interact with changing rainfall regime and potentially alter regional streamflow under climate change.

No MeSH data available.


Relationships between event stemflow funneling ratios and rainfall depth for the different canopy types.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4636379&req=5

pone.0141422.g006: Relationships between event stemflow funneling ratios and rainfall depth for the different canopy types.

Mentions: For all canopy types the funneling ratio initially increased with increasing rainfall amounts and reached peak F values at about 35 mm. The funneling ratio then began to decrease as rainfall amounts increased from 35 mm to 53 mm, our highest rainfall event. This trend followed a second order polynomial relationship with R2 values from 0.76 to 0.85 (Fig 6). Event rainfall amount explained much of the variation in funneling ratios for the three canopy types. For the full range of event rainfall amounts the open stand redcedars had the highest average funneling ratios, across all tree sizes, followed by dense, and then closed stand redcedars. Based on the linear relationship of stemflow to rainfall amount, the calculated threshold of rainfall amount to produce stemflow for open, dense and closed stands was 2.3 mm, 2.7 mm and 3.0 mm, respectively.


Canopy Interception for a Tallgrass Prairie under Juniper Encroachment.

Zou CB, Caterina GL, Will RE, Stebler E, Turton D - PLoS ONE (2015)

Relationships between event stemflow funneling ratios and rainfall depth for the different canopy types.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4636379&req=5

pone.0141422.g006: Relationships between event stemflow funneling ratios and rainfall depth for the different canopy types.
Mentions: For all canopy types the funneling ratio initially increased with increasing rainfall amounts and reached peak F values at about 35 mm. The funneling ratio then began to decrease as rainfall amounts increased from 35 mm to 53 mm, our highest rainfall event. This trend followed a second order polynomial relationship with R2 values from 0.76 to 0.85 (Fig 6). Event rainfall amount explained much of the variation in funneling ratios for the three canopy types. For the full range of event rainfall amounts the open stand redcedars had the highest average funneling ratios, across all tree sizes, followed by dense, and then closed stand redcedars. Based on the linear relationship of stemflow to rainfall amount, the calculated threshold of rainfall amount to produce stemflow for open, dense and closed stands was 2.3 mm, 2.7 mm and 3.0 mm, respectively.

Bottom Line: Larger trees were more effective in partitioning rainfall into throughfall and no significant changes in the total interception ratios among canopy types and tree size were found.On an annual basis, our results showed no significant difference in total rainfall loss to canopy interception between redcedar trees and tallgrass prairie.Increasing structural complexity associated with redcedar encroachment into tallgrass prairie changes the rainfall redistribution and partitioning pattern at both the temporal and spatial scales, but does not change the overall canopy interception ratios compared with unburned and ungrazed tallgrass prairie.

View Article: PubMed Central - PubMed

Affiliation: Department of Natural Resource Ecology & Management, Oklahoma State University, Stillwater, OK 74078, United States of America.

ABSTRACT
Rainfall partitioning and redistribution by canopies are important ecohydrological processes underlying ecosystem dynamics. We quantified and contrasted spatial and temporal variations of rainfall redistribution for a juniper (Juniperus virginiana, redcedar) woodland and a tallgrass prairie in the south-central Great Plains, USA. Our results showed that redcedar trees had high canopy storage capacity (S) ranging from 2.14 mm for open stands to 3.44 mm for closed stands. The canopy funneling ratios (F) of redcedar trees varied substantially among stand type and tree size. The open stands and smaller trees usually had higher F values and were more efficient in partitioning rainfall into stemflow. Larger trees were more effective in partitioning rainfall into throughfall and no significant changes in the total interception ratios among canopy types and tree size were found. The S values were highly variable for tallgrass prairie, ranging from 0.27 mm at early growing season to 3.86 mm at senescence. As a result, the rainfall interception by tallgrass prairie was characterized by high temporal instability. On an annual basis, our results showed no significant difference in total rainfall loss to canopy interception between redcedar trees and tallgrass prairie. Increasing structural complexity associated with redcedar encroachment into tallgrass prairie changes the rainfall redistribution and partitioning pattern at both the temporal and spatial scales, but does not change the overall canopy interception ratios compared with unburned and ungrazed tallgrass prairie. Our findings support the idea of convergence in interception ratio for different canopy structures under the same precipitation regime. The temporal change in rainfall interception loss from redcedar encroachment is important to understand how juniper encroachment will interact with changing rainfall regime and potentially alter regional streamflow under climate change.

No MeSH data available.