Limits...
Carotid Artery Longitudinal Displacement, Cardiovascular Disease and Risk Factors: The Multi-Ethnic Study of Atherosclerosis.

Gepner AD, Colangelo LA, Reilly N, Korcarz CE, Kaufman JD, Stein JH - PLoS ONE (2015)

Bottom Line: Participants were a mean (standard deviation) 59.0 (8.7) years old, 48% female, 39% White, 26% Black, 22% Hispanic, and 14% Chinese.Longitudinal displacement was not associated with other cardiovascular disease risk factors or markers of arterial stiffness.After adjustment for age and sex, and heart rate, Chinese race/ethnicity (β = -0.10, p = 0.04) and carotid intima-media thickness (β = 0.30 p = 0.003) were associated independently with longitudinal displacement.

View Article: PubMed Central - PubMed

Affiliation: Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America.

ABSTRACT

Background: Associations between carotid artery longitudinal displacement, cardiovascular disease risk factors, and events were evaluated in a large, multi-ethnic cohort.

Materials and methods: A novel, reproducible protocol was developed for measuring right common carotid artery longitudinal displacement using ultrasound speckle-tracking. Total longitudinal displacement was measured in 389 randomly selected participants from the Multi-Ethnic Study of Atherosclerosis that were free of cardiovascular disease at baseline. Univariate analyses and Pearson Correlations were used to define relationships between longitudinal displacement with traditional cardiovascular risk factors and traditional measures of arterial stiffness. Hazard ratios of longitudinal displacement for cardiovascular disease and coronary heart disease events were compared using Cox proportional hazards models.

Results: Participants were a mean (standard deviation) 59.0 (8.7) years old, 48% female, 39% White, 26% Black, 22% Hispanic, and 14% Chinese. They had 19 (4.9%) cardiovascular disease and 14 (3.6%) coronary heart disease events over a mean 9.5 years of follow-up. Less longitudinal displacement was associated with Chinese (β = -0.11, p = 0.02) compared to White race/ethnicity and greater longitudinal displacement was associated with higher carotid intima-media thickness (β = 0.26, p = 0.004). Longitudinal displacement was not associated with other cardiovascular disease risk factors or markers of arterial stiffness. After adjustment for age and sex, and heart rate, Chinese race/ethnicity (β = -0.10, p = 0.04) and carotid intima-media thickness (β = 0.30 p = 0.003) were associated independently with longitudinal displacement. Longitudinal displacement predicted coronary heart disease (Hazard ratio [HR] 3.3, 95% Confidence intervals [CI] 0.96-11.14, p = 0.06) and cardiovascular disease (HR 2.1, 95% CI 0.6-7.3, p = 0.23) events.

Conclusions: Less longitudinal displacement is associated with Chinese ethnicity and greater carotid artery longitudinal displacement is associated with thicker intima-media thickness. Longitudinal displacement may predict adverse coronary heart disease and cardiovascular disease events.

No MeSH data available.


Related in: MedlinePlus

Measurement of Carotid Artery Longitudinal Displacement.Panel A. Image of the right common carotid artery. The overlay schematic of the tracing point locations (green circles) are used for the determination of longitudinal displacement. A region of interest was identified by measuring 0.5 cm caudal from the carotid bulb along the far wall of the distal common carotid artery, using an onscreen measuring tool (Microsoft Windows Ruler). The second and third points were placed 0.1 cm apart, extending caudally. Each point that was placed at the intima-media interface is tracked using a “speckle tracking” algorithm (TomTec, Unterscheissheim, Germany) that tracks specific pixel movement during the cardiac cycle. Panel B. Sample output of a longitudinal displacement waveform indicated by the solid blue line. This was generated using a “speckle tracking” algorithm (TomTec, Unterscheissheim, Germany) with a free-trace feature that makes no geometric assumptions about the shape of the object being analyzed. Longitudinal displacement (mm) is on the y-axis and time (ms) is on the x-axis. Arrows mark the maximum and minimum displacement of the second and third beats in the ultrasound loop. The dotted lines represent the total longitudinal displacement for these beats. Reported longitudinal displacement values are averaged over two cardiac cycles.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4636302&req=5

pone.0142138.g001: Measurement of Carotid Artery Longitudinal Displacement.Panel A. Image of the right common carotid artery. The overlay schematic of the tracing point locations (green circles) are used for the determination of longitudinal displacement. A region of interest was identified by measuring 0.5 cm caudal from the carotid bulb along the far wall of the distal common carotid artery, using an onscreen measuring tool (Microsoft Windows Ruler). The second and third points were placed 0.1 cm apart, extending caudally. Each point that was placed at the intima-media interface is tracked using a “speckle tracking” algorithm (TomTec, Unterscheissheim, Germany) that tracks specific pixel movement during the cardiac cycle. Panel B. Sample output of a longitudinal displacement waveform indicated by the solid blue line. This was generated using a “speckle tracking” algorithm (TomTec, Unterscheissheim, Germany) with a free-trace feature that makes no geometric assumptions about the shape of the object being analyzed. Longitudinal displacement (mm) is on the y-axis and time (ms) is on the x-axis. Arrows mark the maximum and minimum displacement of the second and third beats in the ultrasound loop. The dotted lines represent the total longitudinal displacement for these beats. Reported longitudinal displacement values are averaged over two cardiac cycles.

Mentions: A new technique and protocol was developed and validated for using VVI analysis software to measure carotid artery LD and velocity (TomTec, Unterscheissheim, Germany). One reader (ADG) performed all the VVI measurements using a free-trace feature to track the far wall of the right common carotid artery. A region of interest was identified by measuring 0.5 cm caudal from the carotid bulb along the far wall of the distal common carotid artery, using an onscreen measuring tool (Microsoft Windows Ruler). A second and third point were placed 0.1 cm apart extending caudally in the CCA (Fig 1, Panel A). All points were placed at the intima-media interface. The free-trace feature makes no geometric assumptions about the shape and movement of the object being analyzed. From the outputted waveform, LD was measured in 2 cardiac cycles (Fig 1, Panel B). The absolute value described the total LD of the carotid artery during the cardiac cycle. LD was averaged for the two beats. A subset of ultrasound loops from 25 participants were re-measured by a second reader (CEK) and assessed for inter-reader variability to ensure reproducibility of this new technique.


Carotid Artery Longitudinal Displacement, Cardiovascular Disease and Risk Factors: The Multi-Ethnic Study of Atherosclerosis.

Gepner AD, Colangelo LA, Reilly N, Korcarz CE, Kaufman JD, Stein JH - PLoS ONE (2015)

Measurement of Carotid Artery Longitudinal Displacement.Panel A. Image of the right common carotid artery. The overlay schematic of the tracing point locations (green circles) are used for the determination of longitudinal displacement. A region of interest was identified by measuring 0.5 cm caudal from the carotid bulb along the far wall of the distal common carotid artery, using an onscreen measuring tool (Microsoft Windows Ruler). The second and third points were placed 0.1 cm apart, extending caudally. Each point that was placed at the intima-media interface is tracked using a “speckle tracking” algorithm (TomTec, Unterscheissheim, Germany) that tracks specific pixel movement during the cardiac cycle. Panel B. Sample output of a longitudinal displacement waveform indicated by the solid blue line. This was generated using a “speckle tracking” algorithm (TomTec, Unterscheissheim, Germany) with a free-trace feature that makes no geometric assumptions about the shape of the object being analyzed. Longitudinal displacement (mm) is on the y-axis and time (ms) is on the x-axis. Arrows mark the maximum and minimum displacement of the second and third beats in the ultrasound loop. The dotted lines represent the total longitudinal displacement for these beats. Reported longitudinal displacement values are averaged over two cardiac cycles.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4636302&req=5

pone.0142138.g001: Measurement of Carotid Artery Longitudinal Displacement.Panel A. Image of the right common carotid artery. The overlay schematic of the tracing point locations (green circles) are used for the determination of longitudinal displacement. A region of interest was identified by measuring 0.5 cm caudal from the carotid bulb along the far wall of the distal common carotid artery, using an onscreen measuring tool (Microsoft Windows Ruler). The second and third points were placed 0.1 cm apart, extending caudally. Each point that was placed at the intima-media interface is tracked using a “speckle tracking” algorithm (TomTec, Unterscheissheim, Germany) that tracks specific pixel movement during the cardiac cycle. Panel B. Sample output of a longitudinal displacement waveform indicated by the solid blue line. This was generated using a “speckle tracking” algorithm (TomTec, Unterscheissheim, Germany) with a free-trace feature that makes no geometric assumptions about the shape of the object being analyzed. Longitudinal displacement (mm) is on the y-axis and time (ms) is on the x-axis. Arrows mark the maximum and minimum displacement of the second and third beats in the ultrasound loop. The dotted lines represent the total longitudinal displacement for these beats. Reported longitudinal displacement values are averaged over two cardiac cycles.
Mentions: A new technique and protocol was developed and validated for using VVI analysis software to measure carotid artery LD and velocity (TomTec, Unterscheissheim, Germany). One reader (ADG) performed all the VVI measurements using a free-trace feature to track the far wall of the right common carotid artery. A region of interest was identified by measuring 0.5 cm caudal from the carotid bulb along the far wall of the distal common carotid artery, using an onscreen measuring tool (Microsoft Windows Ruler). A second and third point were placed 0.1 cm apart extending caudally in the CCA (Fig 1, Panel A). All points were placed at the intima-media interface. The free-trace feature makes no geometric assumptions about the shape and movement of the object being analyzed. From the outputted waveform, LD was measured in 2 cardiac cycles (Fig 1, Panel B). The absolute value described the total LD of the carotid artery during the cardiac cycle. LD was averaged for the two beats. A subset of ultrasound loops from 25 participants were re-measured by a second reader (CEK) and assessed for inter-reader variability to ensure reproducibility of this new technique.

Bottom Line: Participants were a mean (standard deviation) 59.0 (8.7) years old, 48% female, 39% White, 26% Black, 22% Hispanic, and 14% Chinese.Longitudinal displacement was not associated with other cardiovascular disease risk factors or markers of arterial stiffness.After adjustment for age and sex, and heart rate, Chinese race/ethnicity (β = -0.10, p = 0.04) and carotid intima-media thickness (β = 0.30 p = 0.003) were associated independently with longitudinal displacement.

View Article: PubMed Central - PubMed

Affiliation: Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America.

ABSTRACT

Background: Associations between carotid artery longitudinal displacement, cardiovascular disease risk factors, and events were evaluated in a large, multi-ethnic cohort.

Materials and methods: A novel, reproducible protocol was developed for measuring right common carotid artery longitudinal displacement using ultrasound speckle-tracking. Total longitudinal displacement was measured in 389 randomly selected participants from the Multi-Ethnic Study of Atherosclerosis that were free of cardiovascular disease at baseline. Univariate analyses and Pearson Correlations were used to define relationships between longitudinal displacement with traditional cardiovascular risk factors and traditional measures of arterial stiffness. Hazard ratios of longitudinal displacement for cardiovascular disease and coronary heart disease events were compared using Cox proportional hazards models.

Results: Participants were a mean (standard deviation) 59.0 (8.7) years old, 48% female, 39% White, 26% Black, 22% Hispanic, and 14% Chinese. They had 19 (4.9%) cardiovascular disease and 14 (3.6%) coronary heart disease events over a mean 9.5 years of follow-up. Less longitudinal displacement was associated with Chinese (β = -0.11, p = 0.02) compared to White race/ethnicity and greater longitudinal displacement was associated with higher carotid intima-media thickness (β = 0.26, p = 0.004). Longitudinal displacement was not associated with other cardiovascular disease risk factors or markers of arterial stiffness. After adjustment for age and sex, and heart rate, Chinese race/ethnicity (β = -0.10, p = 0.04) and carotid intima-media thickness (β = 0.30 p = 0.003) were associated independently with longitudinal displacement. Longitudinal displacement predicted coronary heart disease (Hazard ratio [HR] 3.3, 95% Confidence intervals [CI] 0.96-11.14, p = 0.06) and cardiovascular disease (HR 2.1, 95% CI 0.6-7.3, p = 0.23) events.

Conclusions: Less longitudinal displacement is associated with Chinese ethnicity and greater carotid artery longitudinal displacement is associated with thicker intima-media thickness. Longitudinal displacement may predict adverse coronary heart disease and cardiovascular disease events.

No MeSH data available.


Related in: MedlinePlus